Reg. No.					
1.09.1.0.	l.				ĺ

Page 1 of 2

IV SEMESTER B.TECH. (INFORMATION TECHNOLOGY)

END SEMESTER EXAMINATIONS, APRIL 2018

COMPUTER ORGANISATION AND MICROPROCESSOR SYSTEMS [ICT 2202]
REVISED CREDIT SYSTEM
(19/04/2018)

		(19/04/2018)							
Time: 3 Hours MAX. MARKS: 50									
		Instructions to Candidates: Answer ALL the questions.							
		Missing data, if any, may be suitably assumed.							
1 <i>A</i>		. Explain paging and segmentation memory management techniques with neat block diagrams.							
1E	₿.	Explain the following addressing mode of 8086 microprocessor with an example for each:							
. 10	7.	i. Variable port ii. Register Indirect iii. Based indexed If the physical branch address is 5A230H when CS = 5200H, what is the physical address if CS is changed to 7800H?							
2 <i>A</i>	A.	Explain the following instructions with an example for each: i. XLAT ii. IDIV iii. JLE iv. SAR v. SCASB	5						
21	.	Draw the block diagram of 8254 and answer the following: i. Find the configuration for 8254 if the control register is programmed as follows: MOV AL, 36H OUT 97H, AL							
÷		ii. Program, Counter 2 to operate in mode 3 with binary count, to divide CLK 2 by number C26AH. Also, find the frequency of OUT 2 for this configuration, if CLK 2 = 1.8 MHz.	3						
20	.	Explain the priority in which 8086 services the interrupts if two or more interrupts occur at the same time.	2						
34	A.	Given $M = 17_{(10)}$ and $Q = -16_{(10)}$, perform multiplication using Booth's Algorithm indicating all the steps.	5						
31	₿.	peripheral interface 8255 working in mode 0. Write an 8086 procedure that detects							
30	a key press and returns the keycode in the register BL. C. Assume a system's memory has 128M words. Blocks are 64 words in length and the cache consists of 32K blocks.								
		i. What are the sizes of the tag, set, and word fields assuming a set associative cache mapping scheme with 4 blocks/set?							
		ii. Also specify the first four block numbers of main memory in ascending order that map to set 0.							

ICT 2202

Design the Microprogrammed controller for the algorithm given below: Declare registers A[4], M[4],Q[5], L[3]; Declare buses Inbus[4], Outbus[4]; Start: $A \leftarrow 0$, $M \leftarrow Inbus$, $L \leftarrow 4$; $\mathbb{Q}[4:1] \leftarrow \mathbb{I}$ nbus, $\mathbb{Q}[0] \leftarrow 0$; Loop: If Q[1:0]=01 then Goto Add; If Q[1:0]=10 then Goto Sub; Go to Rshift Add: $A \leftarrow A + M$; Go to Rshift $A \leftarrow A-M$; Sub: Rshift: ASR(AQ), L \leftarrow L-1; If L > 0 then Goto Loop Outbus=A; Outbus=Q[4:1]; Halt: Go to Halt; 5 4B. Treat the concatenation of the contents of DX:AX as a 32-bit number and write a program that puts the bit position number of the first bit containing a 1 from the least significant bit position, in register BL. 3 Explain the following pins of 8086 microprocessor: 4C. ALE ii. RESET 2 Draw a neat diagram of 8086 architecture and explain different parts of Execution Unit. 5 With neat diagrams, explain polled and daisy chain techniques for servicing multiple 5B. interrupts. 3 Explain cycle - stealing and interleaved DMA. 2 5C.