

IV SEMESTER B.TECH (CS/IT/CC) END SEMESTER EXAMINATIONS, April 2018

SUBJECT: ENGINEERING MATHEMATICS - IV

[MAT -2206]

REVISED CREDIT SYSTEM (23/04/2018)

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates:

- ✤ Answer ALL questions.
- ✤ All questions carry equal marks.

1A.	Box 1 contains 5 red and 4 green balls and box 2 contains 4 red and 6 green balls. Three balls are randomly drawn from box 1 and placed in box 2. Then a ball is taken from box 2. If the ball taken from box 2 is found red, find the probability that 2 red and 1 green balls are transferred from box 1 to box 2?									4				
1 B .	Two coins C_1 and C_2 have a probability of falling heads p_1 and p_2 , respectively. You win a bet if in 3 tosses you get at least two heads in succession. You toss the coins alternately starting with either coin. If $p_1 > p_2$, what coin would you select to start the game?										3			
1C.	The diameter of an electric cable X is assumed to be a continuous random variable with p.d.f $f(x) = 6x (1-x), 0 \le x \le 1$. a) Find the c.d.f of X. b) Determine a number 'b' such that $P(x < b) = 2P(x > b)$											3		
2A.	T fi s	The following rom a teleph ignificance l Digit Frequency	g figure none di evel. 0 1026	es show rectory 1 1107	2 y that the second sec	the dis whet 3 966	stribution her the 4 1075	on of c digits 5 933	ligits in occur 6 1107	r num equal 7 972	ber ch ly fre 8 964	osen a quentl 9 853	at random y at 0.05 total 10000	4

2B.	The random variable (X, Y) has joint pdf given by	
	$f(x, y) = \begin{cases} x + y, & 0 \le x \le 1, \ 0 \le y \le 1 \\ 0, & \text{elsewhere} \end{cases}$. Compute the correlation coefficient between X & Y.	3
2C.	The annual rainfall at a certain locality is known to be a normally distributed random variable with mean value equal to 29.2 inches and standard deviation 2.5 inches. How many inches of rain (annually) is exceeded about 5 percent of the time?	3
3A.	Let (X_1, X_2) be a sample of size 2 from the distribution having the pdf $f(x; \theta) = \begin{cases} \frac{1}{\theta} e^{\frac{-x}{\theta}} & 0 < x < \infty, \ \theta > 0 \\ 0 & Elsewhere \end{cases}$. We reject H ₀ : $\theta = 2$ and accept H ₁ : $\theta = 1$, if the observed values (x_1, x_2) are such that $\frac{f(x_1; 2)f(x_2; 2)}{f(x_1; 1)f(x_2; 1)} \le \frac{1}{2}$. Find significance level of the test and the power of the test when H ₀ is false.	4
3B.	Show that for the random variable X having normal distribution with mean μ and variance σ^2 , $E(X-\mu)^{2n} = 1.3.5(2n-1)\sigma^{2n}$.	3
3C.	Suppose that random variable X is uniformly distributed over (-1, 1). Find the pdf of $Y = 4 - x^2$.	3
4A.	Let $(X_1, X_2,, X_n)$ denote a random sample from a distribution which is $N(\theta_1, \theta_2), -\infty < \theta_1 < \infty, -\infty < \theta_2 < \infty$. Find maximum likelihood estimators for $\theta_1 \& \theta_2$.	4
4B.	Find the mean and variance of Gamma distribution.	3
4C.	Suppose that X has distribution N(μ , σ^2). A sample of size 20 yields $\bar{x} = 3.8$ and $s^2 = 4.6$. Obtain a 90 percent confidence interval for σ^2 and μ .	3
5A.	Compute an approximate probability that the mean of a random sample of size 8, from a distribution having the pdf $f(x) = \begin{cases} 2(1-x) & 0 < x < 1 \\ 0 & elsewhere \end{cases}$ is between $\frac{1}{2}$ and $\frac{5}{8}$.	4
5B.	Suppose that X is uniformly distributed over $(-a, a)$ where $a > 0$. Whenever possible determine 'a' such that (i) $Pr(X>1)=1/3$ (ii) $Pr(X<1)=1/2$ (iii) $Pr(X <1)=Pr(X >1)$	3
5C.	Find the moment generating function of binomial distribution with parameters n and p and hence find its mean and variance.	3