Reg. No.	
----------	--

MANIPAL INSTITUTE OF TECHNOLOGY

(A constituent unit of MAHE, Manipal)

IV SEMESTER B.TECH (MECHANICAL) END SEMESTER EXAMINATIONS, APRIL-2018

SUBJECT: ENGINEERING MATHEMATICS - IV

[MAT -2210]

REVISED CREDIT SYSTEM

Time: 3 Hours

(19/04/2018)

MAX. MARKS: 50

Instructions to Candidates:

✤ Answer ALL questions.

1A.	Obtain the series solution of the Bessel's equation										
	$x^{2}y'' + xy' + (x^{2} - n^{2})y = 0$ in the form $y = A J_{n}(x) + B J_{-n}(x)$							4			
1 B .	Express the polynomial $f(x) = x^3 - 5x^2 + 6x + 1$ in terms of Legendre										
	polynomials.							3			
1C.	The random variable X has the following probability function:										
		X	-2	-1	0	1		2	3		
			0.1	17	0.0			0.0	17		
		$P(\mathbf{x})$	0.1	K	0.2	2K		0.3	K		
	i) Find the value of K ii) Find the cdf of X iii) Find P($0 < X < 3$)										
	,			,				,	,	,	3
2A.	Fit a parabola in the form $y = Ax^2 + Bx + C$ for the following data :										
		Х	0	1	1	2		3	4		
	_	X 7	1	1	Q	12		2.5	63	-	
		У	1	1.	.0	1.3	2	2.5	0.5		
			1	I				L		-	4
2 B .	The cha	ances of	A, B, C	becon	ning the	gener	al r	nanage	er of a d	certain company	
	are in the ratio 4:2:3. The probabilities that the bonus scheme will be										
	introduced in the company if A, B, C become general manager are 0.3, 0.7,										
	0.8 respectively. If the bonus scheme has been introduced, what is the										
	probability that A has been appointed as general manager?										
		-		-		-			-		3

2C.	Three winning tickets are drawn from an urn containing 100 tickets. What	
	is the probability of winning for a person who buys i) 4 tickets ii) only one	
	ticket?	3
3A.	Suppose that the two dimensional random variable (X, Y) has joint pdf	
	$(x) = \begin{cases} e^{-x-y}, & x \ge 0, y \ge 0\\ 0 & elsewhere \end{cases}$. Find the marginal pdfs of X and Y. Are	
	X and Y independent?	4
3B.	Show that for the random variable X having normal distribution with mean μ and variance σ^2 , $E(X-\mu)^{2n} = 1.3.5(2n-1)\sigma^{2n}$.	
		3
3C.	Find the mean and variance of the Poisson distribution with parameter α .	3
4A.	Compute an approximate probability that the mean of a random sample of	
	size 25, from a distribution having the pdf $f(x) = \begin{cases} 2e^{-2x}, & x \ge 0\\ 0, & elsewhere \end{cases}$ is	
	between $\frac{1}{4}$ and $\frac{3}{4}$.	4
4B.	Two balls are randomly chosen from an urn containing 8 white, 4 black and 2 orange balls. Suppose that we win \$2 for each black ball selected and we loose \$1 for each white ball selected. Let X denote our winnings. Write the probability distribution of X. Find the mean and variance of X.	
		3
4C.	Prove that $(n+1)P_{n+1}(x) = (2n+1)xP_n(x) - nP_{n-1}(x)$.	3
5A.	With the usual notation, prove that $e^{\frac{x}{2}(t-\frac{1}{t})} = \sum_{n=-\infty}^{\infty} J_n(x)t^n$.	4
5B.	Suppose that X is a random variable with pdf given by	
	$f(x) = \begin{cases} 2x, & 0 < x < 1 \\ 0, & elsewhere \end{cases}$. Find the pdf of $Y = e^{-X}$ and E(Y).	
		3
5C.	The local authorities in a certain city install 10,000 electric lamps in the streets of the city. If these lamps have an average life of 1,000 burning hours with a standard deviation of 200 hours, assuming normality, what number of lamps might be expected to fail i) in the first 800 burning hours? ii) between 800 and 1200 burning hours?	
		3