$A_V = \begin{bmatrix} 10.0\\ 20.0\\ 30.0 \end{bmatrix}$

Given

${}^{A}_{B}T =$	[0.866	-0.500	0.00	11]
	0.500	0.866	0.00	-3
	0.00	0.00	1.00	9
	LΟ	0	0	1

in the equation.

- Calculate B_V . A vector A_P is rotated about \hat{Y}_A by 30 degrees and is subsequently rotated **1B** 03 About \hat{X}_A by 45 degrees. Find the rotation matrix that accomplishes these
- rotations in the given order. 1C A fifth order polynomial is to be used to control the motions of the joints of
- 04 a robot . Find the coefficients of the fifth order polynomial that allow a joint to go from 0° to 50° in 4 seconds, while the initial and final velocities are zero the initial acceleration and deceleration are 7 and 8 degrees/sec² respectively.

manipulator. Illustrate the method for finding out the individual components

2A. Write down the general form of EoM(Equation of Motion) for a multi-link

June, 2018

IV SEMESTER B.TECH. (OPEN ELECTIVE)

END SEMESTER EXAMINATIONS, JUNE 2018

SUBJECT: INTRODUCTION TO ROBOTICS [MTE 3283]

MAX. MARKS: 50

Instructions to Candidates:

- ✤ Answer ALL the questions.
- Data not provided may be suitably justified and assumed
- 1A A velocity vector is given by:

MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL (A constituent institution of MAHE, Manipal)

Time: 3 Hours

Page 1 of 3

05

03

Figure .Q2B

- 3A. Write down the forward kinematic equation for a three link planar 05 manipulator and derive its complete Jacobian matrix.
 3B. Illustrate an inverse kinematics scheme (flow-chart/algorithm/pseudo 05 code) employing Jacobian of the manipulator.
- 4A. Elaborate the concept of Model Based Control using flowchart. 03
- **4B.** Write short notes on:
 - i. Forward Kinematics using D-H Table
 - ii. Position Regulation System
- 4C. Determine the motion of the system in Figure.Q4C. if parameter values 03 are in m= 1, b = 4, and k = 3 and the block (initially at rest) is released from the position x = 5.

Figure. Q4C.

5A. Define pictorially the four parameters in a D-H Table. Calculate the D-H 07 Table for the PUMA 560 as shown in Figure Q.5A and derive the forward kinematics for the same.(Assume various parameters).

04

Figure Q.5A

5B. Sketch the workspace for three link planar manipulator.

03