Reg. No.					

IV SEMESTER B.TECH. (MECHATRONICS ENGINEERING)

END SEMESTER EXAMINATIONS, JUNE 2018

SUBJECT: LINEAR CONTROL THEORY [MTE 2203]

Time: 3 Hours

MAX. MARKS: 50

4 C	For the unity feedback system having loop transfer function G(s) given below, determine			
	the range of 'K' to ensure stability.			
	$G(s) = \frac{K(s+6)}{s(s+1)(s+4)}$			
5A	Sketch the root locus for the unity feedback system represented by following open loop transfer function.	06		
	K(s+6)			
	$G(s) = \frac{1}{(s+3)(s+4)(s+7)(s+9)}$			
5B	Explain the following terms related to Root Locus plot of a system	02		
	a) Breakaway/Break in point			
	b) Angle of arrival and Departure			
5C	Differenciate between a PI compensator and Lag compensator. Explain with suitable example.	02		