

Reg. No.

DEPARTMENT OF SCIENCES, IV SEMESTER M.Sc (Applied Mathematics & Computing) END SEMESTER EXAMINATIONS, APRIL 2018

STOCHASTIC PROCESSES AND RELIABILITY [MAT 706]

(REVISED CREDIT SYSTEM)

Time:	3 Hours	Date:23/04/2108		MAX. MARKS: 50	
Note: (i) Answer any FIVE FULL questions. All questions carry equal Marks (3 + 3+ 4) (ii) Draw diagrams, and write equations wherever necessary					
1A.	Define generating function, when does generating function becomes p.g.f. ?				
	Consider the process $X(t) = A \cos wt + B \sin wt$, where A ,B are uncorrelated random variables with mean 0 and variance 1 and w is a positive constant. Is $X(t)$ covariance stationary?				
1 B .	If N(t) is a Poisson process and s <t, <math="" find="" of="" probability="" the="" then="">P{N(s)=k N(t)=n}.</t,>				
1C.	Suppose that E and F occur independently and in accordance with Poisson processes				
	with parameters a and b respectively. Find the probability that k occurrences of E				
	take place between every second occurrence of F.				
2A.	Three children (denoted by 1,2,3) arranged in a circle play a game of throwing a				
	ball to one another. At each stage the child having the ball is equally likely to throw				
	it to any one of the other two children. Suppose that X_0 denotes the child who had				
	the ball initia	ally and $X_n(n \ge 1)$ denotes	es the child wh	o had the ball after	
	n throws. Show that $\{X_n\}$ forms a Markov chain. Evaluate (i) T.p.m P				
	(ii) $P \{X_2=2, X_1=1 \mid X_0=2\}$.(iii) $P \{X_2=2, X_1=1, X_0=2\}$.				

- 2B. State Chapman Kolmogorov's equation.
- 2C. A particle starting from the origin moves from position j to position (j+1) with probability a_j and returns to origin with probability $(1 a_j)$. Suppose that the states, after n moves are $0, 1, 2, \dots$ then show that the state 0 is recurrent iff $\lim_{i \to \infty} (a_1, \dots, a_n) \to 0$ as $n \to \infty$.

- 3A. A person enlists subscriptions to a magazine, the number enlisted being a Poisson process with mean rate 6 per day. Subscribers may subscribe for 1 or 2 years independently of one another with respective probabilities 2/3 and 1/3.Find the total commission earned in period t and its variance.
- 3B. Consider a Yule-Furry process starting with a single member at time t = 0, and having birth rate λ . Suppose that this first member(parent) is also subject to death, his lifetime being distributed as an exponential variable with parameter μ . Find the distribution of the number N of offspring due to this parent as well as his descendants at the time of death of the parent.
- 3C. The number of accidents in a town follows a Poisson process with a mean of two per day and the number X_i of people involved in the i^{'th} accident has the distribution $P{X_i=k}=1/2^k(k\geq 1)$. Find the mean and variance of the number of people involved in accidents per week.
- 4A. Find the differential equation of pure death process. If the process starts with i individuals, find the mean and variance of the number N(t) present at time t.
- 4B. Find the probability of ultimate extinction in the case of the linear growth process starting with 100 individuals at time 0.
- 4C. Find the generating function of the sequence of Fibonacci numbers $f_0 = 0, f_1 = 1, f_n = f_{n-1} + f_{n-2}$ for $n \ge 2$.
- 5A. Consider the Markov chain with t.p.m

$$P = \begin{pmatrix} 0 & 1 & 2 \\ 0 & 1 & 0 \\ \frac{1}{2} & 0 & \frac{1}{2} \\ 0 & 1 & 0 \end{pmatrix}$$

Find the mean recurrence time for the state 2. Is the chain irreducible, ergodic? If so find the limiting distributions.

- 5B. Suppose that customers arrive at a counter with a mean rate of 2/min. Find the probability that the interval between two successive arrival is
 (i) more than 2 min (ii) 5 min or less (iii) between 2 & 6 min.
- 5C. State and derive Yule Fury birth process.
- 6A. Prove that the state j is persistent or transient according as $\sum_{n=0}^{\infty} P_{jj}^{(n)} = \infty$ or $<\infty$.
- 6B. Suppose that a fair die is tossed. Let the states of X_n be k (=1,2,....,6), where k is the maximum number shown in the first n tosses. Find p and μ_{jj} , for j = 1,4. Is the state 3 absorbing?
- 6C. Define the followings:
 - (i) Immigration Emigration Process

(ii) Immigration – Death Process

(iii) Time dependent Poisson Process
