

Reg. No.					

DEPARTMENT OF SCIENCES, IV SEMESTER M.Sc (Applied Mathematics & Computing) END SEMESTER MAKEUP EXAMINATIONS, June 2018

STOCHASTIC PROCESSES AND RELIABILITY [MAT 706]

(REVISED CREDIT SYSTEM)

Time: 3 Hours	Date:11/06/2018	MAX. MARKS: 50
	FIVE FULL questions. All questions carry ed ns, and write equations wherever necessa	

1A.	Let $X(t) = \sum_{r=1}^{k} (A_r \cos \theta_r t + B_r \sin \theta_r t)$ where A_r , B_r are uncorrelated random variables with mean 0, variance σ^2 and θ_r are constants. Is {X(t)} covariance stationary? Is it a Markov Process?				
1 B .	Solve the difference equation using p.g.f.: $u_n = qu_{n-1} + p(1-u_{n-1}), n \ge 1, p+q = 1, u_0 = 1.$				
1C.	Suppose that the probability of a rainy day (state 1) following a dry day(state 0) is 1/3 and that the probability of a rainy day following a dry day is ½.Given that May 1 is a dry day, what is the probability May 3 is a dry day?				
2A.	Show that a Markov chain is completely specified by the transition matrix and the initial distribution.				
2B.	Divide the interval [0,t] into a large number n of small intervals of length h and suppose that in each small interval, Bernoulli trials with probability of successes λh are held. Show that the number of successes in an interval of length t is a Poisson process with mean λt . State the assumptions you make.				
2C	Define an intree to a specific point. Explain graph theoretic approach to evaluate limiting distribution to the t.p.m $P = \begin{pmatrix} 0 & 2/3 & 1/3 \\ 1/2 & 0 & 1/2 \\ 1/2 & 1/2 & 0 \end{pmatrix}$				

3A	Let X have a zero – truncated Poisson distribution with zero class missing. Find the p.g.f of X and $E(X^2)$			
3B	Let {X _n , n ≥0} be a Markov chain with three states 0,1,2 and with transition Matrix. $\begin{pmatrix} \frac{3}{4} & \frac{1}{4} & 0\\ \frac{1}{4} & \frac{1}{2} & \frac{1}{4}\\ 0 & \frac{3}{4} & \frac{1}{4} \end{pmatrix}$ and the initial distribution Pr {X ₀ = i} = 1/3, i = 0,1,2 Evaluate : (i) Pr{X ₂ = 2, X ₁ =1 X ₀ = 2 } (ii) Pr{X ₃ = 1, X ₂ =2, X ₁ =1, X ₀ = 2}			
3 C	Prove that in an irreducible chain, all the states are of the same type.			
4 A	Consider a sequence $\{X_n\}$ of independent coin-tossing trials with probability p for head H in a trial. Denote the states of X_n by states 1, 2, 3, 4 according as the trial numbers (n-1) and result in HH,HT,TH,TT respectively. Show that $\{X_n\}$ is a Markov chain Find (i) P ($X_1 = 3 / X_3 = 3$) (ii) P ($X_3 = 3 / X_1 = 4$).			
4B	Find the probability of ultimate extinction in the case of the linear growth process starting with <i>i</i> individuals at time 0.			
4 C	Prove that sum of two independent Poisson processes is a Poisson process.			
5A	A radioactive source emits particles at a rate of 5 per minute in accordance with a Poisson Process. Each particle emitted has a probability 0.6 of being recorded. Find the probability that the number of particle recorded is 10 in a interval of 4 minute.			
5B	If N(t) is a poisson process then prove that auto correlation coefficient between N(t) and N(t+s) is $\{t/t+s\}^{1/2}$.			
5C	Suppose that a certain system can be considered to be in two states : "Operating" and "Under repair" denoted by 1 and 0 respectively. Suppose that the lengths of operating period and the			
6A	State and prove chapman – Kolomogorov's equation.			
6B	Under the postulates of Poisson process, prove that N(t) follows Poisson distribution with mean λt .			
6C	Suppose that customers arrive at a counter with a mean rate of 2/min. Find the probability that the interval between two successive arrival is (i) more than 2 min (ii) 5 min or less (iii) between 2 & 6 min.			