

DEPARTMENT OF SCIENCES, II SEMESTER M.Sc. (PHYSICS) END SEMESTER EXAMINATIONS, APRIL 2018

Subject: Nuclear and Particle Physics [code: PHY 4208] (REVISED CREDIT SYSTEM-2017)

Time: 3 Hours	Date:	MAX. MARKS: 50	
Note: (i) Answer ALL qu (ii) Draw diagrams,	estions and write equations wherever ne	ecessary	
1A. How to estimate nuclear size using mirror nuclei method.		od. [5]	001
IB. Obtain momentum di	stribution function for beta dec	ay and hence sketch beta ray	
spectra.		[5]	201
A. What is "Stopping Time"? Obtain an expression for stop		r stopping time for a charged	CO 2
particle in a traversing med	lium.	[5]	
2B. What is an ideal scintillator? Explain working principle of inorganic scintillation			CO
radiation detector?		[5]	
3A. Draw low lying energ	gy levels in a single particle sh	ell model showing spin-orbit	
nteraction and magic nu	mbers.	[3]	00
3B. How does neutron ab	sorption cross section provide	evidence for shell structure?	00
		[2]	
3C. For Fe (Z=26, A=57), compute total binding energ	gy and coulomb energy using	10
semi empirical mass forr	nula.		
		ren	

$$B(A,Z) = a_{\nu}A - a_{s}A^{2/3} - a_{e}\frac{Z(Z-1)}{A^{1/3}} - a_{sym}\frac{(A-2Z)^{2}}{A} + \delta \begin{cases} a_{\mu}A^{-3/4} & \text{even-even} \\ 0 & \text{even-odd/odd-even} \\ -a_{\mu}A^{3/4} & \text{odd-odd} \end{cases}$$

$$a_{\nu} = 15.5 \text{MeV}$$

$$a_{.} = 16.8 MeV$$

$$a_e = 0.72 MeV$$

$$a_{sym} = 23 \text{MeV}$$

$$a_n = 34 \text{MeV}$$

- 4A. Obtain a relation between angles and nuclear reaction cross section in lab and center of mass system.

 [3]

 4B. What is saturation property of nuclear force? Explain.

 [2]

 4C. Calculate the energy of protons detected at 90° when 2.1 MeV deuterons are incident on Al²⁷ to produce Al²⁸ with an energy difference Q= 5.5 MeV.

 [5]
- 5A. Classify and explain fundamental forces of nature. [4] 5B. Write quark structure of neutron and proton. [2]
- 5C. Estimate the time required for a 5 MeV particle to slowdown and stop in Silicon. Given: Range is 22 x 10⁻⁶m.