Reg. No.		

DEPARTMENT OF SCIENCES, IV SEMESTER M.Sc. (PHYSICS) END SEMESTER EXAMINATIONS, APRIL 2018

Subject: Nuclear Physics III [Code: PHY 708.6] (REVISED CREDIT SYSTEM-2017)

Time: 3 Hours Date: MAX. MARKS: 50

Note: (i) Answer Any FIVE full questions

(ii) Draw diagrams, and write equations wherever necessary

- 1. (a) Obtain an expression for the quadrupole moment of the nucleus.
 - (b) Show that for a homogeneous ellipsoid of semi axes a, b the quadrupole moment is given by Q = (2/5) Ze $(a^2 b^2)$ where a is the length of the semi-major axis and 'b' is the length of the semi-minor axis. Show that the electric quadrupole moment of a nucleus vanishes for a spherically symmetric charge distribution.

[5+5]

- 2. (a) Derive Fermi age equation for diffusion of neutrons.
 - (b) Obtain Four Factor formula in the design of a nuclear reactor.

[5+5]

3. (a)

A beam of 2 MeV neutrons is used to give the reaction ${}^{14}_{7}N + {}^{1}_{0}n \rightarrow {}^{11}_{5}B + {}^{4}_{2}He$. Determine

- (a) The threshold energy of this reaction
- (b) The maximum energy of the α-particles

Given the atomic masses in amu: ${}^{14}_{7}N = 14.003074$; ${}^{1}_{0}n = 1.008665$; ${}^{4}_{2}He = 4.002603$; ${}^{14}_{6}B = 11.009305$; amu = 931.6 MeV.

(b) What are magnetic mirror? Write a note on confinement of Plasma.

[5+5]

- 4. With the help of a neat diagram explain Hofstadter's Electron diffraction experiment to determine the radius of the nucleus. [10]
- Write short notes on the following: (a) Lawson's criterion (b) Pinch effect.
 (c) Thermonuclear reactions [3+3+4]
- 6. (a) Obtain the formula for the average log energy decrement of neutrons.
 - (b) Calculate the number of collisions required to reduce fast fission neutrons with an average initial energy of 2 MeV to the thermal energy (0.025 eV) in a graphite moderated assembly. [$\xi = 0.155$ for graphite]
 - (c) Calculate the number of collisions required for neutrons of 2 MeV to lose 99 % of initial energy in graphite. [ξ =0.155 for graphite] [5+3+2]