Parparel by Dr. V. Upadhyaya

Reg. No.	
riog. Ho.	

Deemed- to -be -University under Section 3 of the UGC Act, 1956

DEPARTMENT OF SCIENCES, MSc (P/C/M/G) IV SEMESTER END SEMESTER EXAMINATIONS, APRIL 2018

SUBJECT: THERMODYNAMICS AND STATISTICAL PHYSICS (PHY-702)
(REVISED CREDIT SYSTEM)

Time: 3 Hours		Date:17-04-2018	MAX. MARKS	AX. MARKS: 50	
Note:	(i) ANSWER ANY FIVE FULL QU (ii) ANY MISSING DATA MAY SUIT	ESTIONS. (B) EACH QUESTION (CARRIES 10 MARKS.		
1A.	Explain Nernst's heat theorem and its consequences.			[6]	
1B.	Obtain the TdS equations.			[4]	
2A.	Calculate the volume elemer an expression for the numbe space.	nt in the phase space for a har er of quantum states in a volum	monic oscillator, and se element of the pha	obtain ase [5]	
2B.	State and prove Liouville's th	neorem.		[5]	
3A.	Derive the statistical interpretation of entropy with reference to micro-car ensemble.			[5]	
3B.	Obtain the most probable	distribution of energy in a car	nonical ensemble.	[5]	
4A.	A diatomic gas is in thermal equilibrium at temperature 500 K. Its rotational constant is $B = 200/m$. Compute the rotational populations (in terms of ground state population) in the rotational states: $J = 0$, 10, 20. The rotational energy is $E = J(J+1) h c B$. Boltzmann constant = 1.38 x 10^{-23} J/K, Speed of light in vacuum = 3.00 x 10^8 m/s, Planck's constant = 6.63 x 10^{-34} J.s. [5]				
4B.	Derive the expression for grand canonical partition function and hence grand canonical partition.				
5A.	Deduce Stefan's law from P	Planck's law of radiation.		[3]	
5B.	Discuss the Pauli's theory of expression for the magnetic	of paramagnetism of an ideal F	ermi-gas and derive	an [7]	

- 6A. Obtain the relation between the fractional fluctuation in energy of a canonical system and the number of particles in the system. [5]
- **6B.** Setup the diffusion equation and solve it. Show that $\langle r^2(t) \rangle = 6 \, D \, t$. [5]

Useful formulae:

Stirling formula: $n! \cong (2\pi n)^{\frac{1}{2}} n^n e^{-n}$

$$\ell n(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \cdots , |x| < 1$$

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$

$$\int_{0}^{\infty} x^{r} e^{-nx} dx = \frac{r!}{n^{r+1}}$$

$$\int_{0}^{\infty} x^{4} \exp(-ax^{2}) dx = \frac{3}{8a^{2}} \sqrt{\frac{\pi}{a}}$$

$$\int_{0}^{\infty} x^{2} \exp(-ax^{2}) dx = \frac{1}{4a} \sqrt{\frac{\pi}{a}}$$

$$\int_{0}^{\infty} \frac{x^{n+1}}{e^{x}-1} dx = \Gamma(n) \zeta(n)$$

 $\Gamma(n+1) = n!$ if n is an integer

 $\Gamma(n+1) = n(n-1) \cdots \frac{3}{2} \cdot \frac{1}{2} \cdot \sqrt{\pi}$ if n is half integral

$$\zeta(4) = \frac{\pi^4}{90}$$

$$\zeta\left(\frac{5}{2}\right) = 1.341$$

$$\zeta\left(\frac{3}{2}\right) = 2.612$$