

II SEM M.TECH. (BME) DEGREE END SEMESTER EXAMINATIONS, APRIL 2018 SUBJECT: PATTERN RECOGNITION (BME 5237) (REVISED CREDIT SYSTEM) Wednesday, 25th April 2018, 9 AM-12 NOON

TIME: 3 HOURS

MAX. MARKS: 100

Instructions to Candidates:

1. Answer ALL questions.

2. Draw labelled diagram wherever necessary

stituent Institution of Manipal University

- 1. (a) Consider two classes C_1 and C_2 with priori probabilities $P(C_1) = P(C_2)$. If class (10) conditional densities are normally distributed with arbitrary but same covariance matrices $\sum_i = \sum_i for \ i = 1,2$ then derive the equation of a decision surface for minimum-error-rate classification for these classes.
 - (b) Explain a training algorithm to update the weights associated with Multi-Layer (10) Perceptron having one hidden layer, using the back-propagation algorithm. Describe the following stages in detail: feed-forward, error estimation and updating of weights.
- 2. (a) Consider two classes with the training sample data as: $C_1 = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 & 1 \end{bmatrix}$ and $C_2 = \begin{bmatrix} 1 & 0 & 0 & -1 \\ 5 & 3 & 4 & 5 \end{bmatrix}$. Calculate the optimum direction \boldsymbol{v} to project classes using Fisher Linear Discriminant Analysis. Illustrate this procedure with the help of a scatter plot. Are these projected classes well separated? Explain. (10)
 - (b) Consider two classes with the training sample data as: $C_1 = (10)$ $\begin{bmatrix} 1 & 1 & 2 & 3 \\ 1 & 3 & 2 & 1 & 3 \end{bmatrix}$ and $C_2 = \begin{bmatrix} 0 & 0 & -1 & 0 & 1 \\ 4 & 6 & 5 & 5 & 5 \end{bmatrix}$. The density function defined on these samples is given by

$$p(x|\theta) = e^{-(x-\theta)^2}$$

Estimate the parameter θ associated with each class using the Maximum Likelihood method.

- 3. (a) Explain the Pattern Recognition System with a block diagram. (10)
 - (b) Consider the set of feature samples: $\begin{bmatrix} 1 & 1 & 2 & 3 & 3 & 2 & 5 & 6 \\ 6 & 4 & 3 & 4 & 6 & 7 & 4 & 5 \end{bmatrix}$. Extract three (10) clusters using the *k*-means clustering algorithm.

- 4. Consider a two classes A & B, with P(A) = P(B), having three independent binary features $[x_1 x_2 x_3]^T$. The feature probabilities as $p_1 = p_2 = 0.8$, $p_3 = q_1 = q_2 = q_3 = 0.5$, where $p_i = P[x_i = 1|A]$ and $q_i = P[x_i = 1|B]$, for i = 1,2,3.
 - a) Derive the Bayesian decision rule and find the sample data for class *A* & *B*.
 - b) Explain, how each feature contributes towards the right decision.
 - c) Sketch this procedure graphically.
 - d) Knowing the sample data for classes *A* & *B*, design the decision surface using Perceptron criterion with learning rate $\eta = 0.2$ and initial weight vector as $W(0) = [-3.2 \ 2.3 \ 1.9 \ 0.83]^T$
- 5. (a) Design the decision-surface for the three classes ω_1, ω_2 and ω_3 having the (10) corresponding linear discriminant functions given as: $g_1(X) = -2x_1 0.75x_2 + 10.25$, $g_2(X) = 2x_1 0.75x_2 + 10.25$ and $g_3(X) = 0.75x_2 + 2.25$ respectively. Plot and identify the regions pertaining to the classes. Classify an unknown sample $x' = [5 \ 4.5]^T$.
 - (b) Construct a single-output perceptron with updated weights for the two dimensional (10) training sample data $[x_1 x_2]^T$ and the corresponding desired outputs *t* as shown in Table 1. Use Gradient Decent Procedure with learning rate $\eta = 0.2$ and initial weight vector $W(0) = [1 0.1 0.3]^T$ to update weights. Draw the scatter plot along with the decision surface.

<i>x</i> ₁	1	2	3	4
<i>x</i> ₂	1	2	0	1
t	1	0	1	0

Table	1
1 auto	1