Reg. No.

IISEMESTER M.TECH (INDUSTRIAL BIOTECHNOLOGY) END SEMESTER EXAMINATIONS, APRIL 2018 (REGULAR)

BIO5221- BIOREACTOR DESIGN AND ANALYSIS

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates:

✤ Answer ALL the questions.

✤ Missing data may be suitable assumed.

1A.	Write the various reaction rate expressions used for Homogeneous and heterogeneous reaction systems	3						
1B.	Explain the external film mass transfer effects in immobilized enzyme reaction system. Develop a suitable expressions for estimation of interfacial substrate concentration and film effectiveness factor for Michaelis-Menten kinetics.	4						
1C	Isomerization of Glucose to Fructose by immobilized glucose isomerase was carried out in a fixed bed bioreactor. The enzyme was immobilized on non-porous glass beads of 2mm diameter. The substrate (S0=2 M) is pumped from the bottom of the reactor at volumetric flow rate of 8ml/min. At this flow rate Damkholar number obtained as 1.25. The intrinsic rate without mass transfer resistance is obtained as 0.085 M/min. Find the film effectiveness factor in the above reaction system.							
2A.	What do you mean by constant feed rate policy in the operation of immobilized enzyme reactor system? Develop a suitable model for predicting the time course profiles of conversion due to enzyme deactivation for Zero order kinetics, no pore diffusion effects in packed bed bioreactor that behaves like PFR.	5						
2B.	 A fluidized-bed, immobilized-cell bioreactor is used for the conversion of glucose to ethanol by <i>Z. mobilis</i> cells immobilized in k-carrageenan gel beads. The dimensions of the bed are 10cm (diameter) by 200 cm. Since the reactor is fed from the bottom of the column and because of CO₂ gas evolution, substrate and cell concentrations decrease with the height of the column. The average cell concentration decreases with the column height according to the following equation: X = X₀(I - 0.005Z) where Z is the column height (cm). The specific rate of substrate consumption is q_S = 2 g S/g cells. h. The feed flow rate and glucose concentration in the feed are 5 L/h and 160 g glucose/l, respectively. a. Determine the substrate (glucose) concentration in the effluent. b. Determine the ethanol concentration in the effluent and ethanol productivity (g/l .h) if Y_{P/S} = 0.48 g ethanol/g glucose. 	5						
3A.	Penicillin is produced by <i>P.chrysogenum</i> in a fed-batch culture with the intermittent addition of glucose solution to the culture medium. The initial	5						

	 culture volume at quasi-steady state is V₀ = 500 L, and glucose-containing nutrient solution is added with a flow rate of v₀ = 50 L/h. Glucose concentration in the feed solution and initial cell concentration are S₀ = 300 g/l and X₀ =20 g/l, respectively. The kinetic and yield coefficients of the organism are μ_m = 0.2 h⁻¹ K_S = 0.5 g/l, and Y _{X/S} = 0.3 g dw/g glucose. a. Determine the culture volume at t = 10 h. b. Determine the concentration of glucose at t = 10 h at quasi-steady state. c. Determine the concentration and total amount of cells at quasi-steady state when t = 10 h. d. If q_P = 0.05 g product/g cells.h and P₀ = 0.1 g/l, determine the product concentration in the vessel at t = 10 h. 										
	Butyric acid is produced using <i>Clostridium butyricum</i> in a Chemostat under sterile environment with glucose as the substrate, $S_0=4$ g/l at dilution rate of D=0.49 h ⁻¹ . Steady state substrate and biomass concentrations are 1.5 and 1.0 g/l respectively. Assume that growth follows the Monod's kinetics with, $\mu_m=0.53$ h ⁻¹ , Ks=0.12 M and Y=0.4. The following material balance equations are obtained for biomass(X) and substrate (S) in the above continuous operation of Chemostat.									E	
3B	 Biomass balance: dX/dt = (μ – D)X –(1) Substrate balance: dS/dt = D(S0 – S) – μX/Y(2) Y=yield factor, μ =specific growth rate, D=dilution rate i. Find the elements of the A matrix in the linearized equations that are obtained using Taylor series expansion. ii. Find the Figen values and discuss on stability of above formentor. 									5	
4A.	Lactic acid is produced using <i>Lacto bacillus</i> in a Chemostat under sterile environment with glucose as the substrate, $S_0=4$ g/l at dilution rate of D=0.3 h ⁻¹ . Steady state substrate and biomass concentrations are 1.5 and 1.0 g/l respectively. Assume that growth follows the Monod's kinetics with, $\mu_m=0.53$ h ⁻¹ , Ks=0.12 g/l and Y=0.4 I. Find the controllability matrix for the above system									5	
4B.	What do you mean by Nutristat operation of continuous fermenter? Design the 5								5		
5A.	The following data were obtained from a non-ideal bioreactor during the RTD experiment using NaCl as the tracer material. Determine the (i) Average residence time (ii) dispersion number (iii) plot $E(\theta)$ vs θ (iv) Find the fraction of material coming out from the reactor in the time interval 290 and 450 s.									RTD ion of	5
	Time, S	0	120	240	360	480	600	720	840	960	
	concentration g/cc	0	6.5	12.5	12.5	10.0	5.0	2.5	1.0	0.0	
5B.	Explain the various tracer inputs signals generally used in RTD experiment									2	
5C	Explain: CIP, COP, SIP of cleaning and sterilization procedures in fermenters									3	