MANIPAL INSTITUTE OF TECHNOLOGY

MANIPAL (A constituent unit of MAHE, Manipal)

II SEMESTER M.TECH. (CHEMICAL ENGINEERING) END SEMESTER EXAMINATIONS, APRIL 2018

SUBJECT: Optimization of Chemical Processes [CHE5201]

REVISED CREDIT SYSTEM

Time:	3	Hours
-	-	

Γ

MAX. MARKS: 50

	Instructions to Candidates:	
	 Answer ALL questions. 	
	 Missing data may be suitably assumed. 	
	 Use of graph sheets permitted 	
1A .	The total annual cost of operating a pump and motor C in a particular piece of equipment is a function of x, the size (horsepower) of the motor, namely $C(x) = \$500 + \$0.9x + \frac{\$0.03}{x}(150,000)$	02
4.5	Find the motor size that minimizes the total annual cost.	
18	In a rough preliminary design for a waste treatment plant the cost of the	03
	components are as follows (in order of operation)	
	$\xrightarrow{x_0} 1 \xrightarrow{x_1} 2 \xrightarrow{x_2} 3 \xrightarrow{x_3}$	
	1. Primary clarifier: Rs. 1200 $x_1^{-1.5}$	
	2. Trickling Filter : Rs. 1000 $x_2^{-1.6}$	
	3. Activated sludge unit: Rs. 6000 $x_3^{-0.3}$	
	Where, the x's are the fraction of the 5-day biochemical oxygen demand (BOD) exiting each respective unit in the process, that is, the exit concentrations of material to be removed. The required removal in each unit should be adjusted so that the final exit concentration x_3 must be less than 0.05. Formulate (only) the optimization problem listing the objective function and constraints.	
1C	A series of four well-mixed reactors operate isothermally in the steady state.	05
	Examine the figure. All the tanks do not have the same volume, but the sum	
	of $V_i = 20 \text{ m}^3$. The component whose concentration is designated by C reacts	
	according to the following mechanism: $r = -kC^n$ in each tank.	

	$\begin{array}{c} C_{0} \\ \hline \\ V_{1}, \theta_{1} \end{array}$	C_1	c_2	(3) \downarrow V_{3}, θ_{3} C_{3}	$ \begin{array}{c} (4) \\ \downarrow \\ V_4, \theta_4 \end{array} $ $ \begin{array}{c} C_4 \\ \hline C_4 \end{array} $				
	Determine	the value	es of the	e tank vol	umes (real re	sidence time	es of the		
	component)	in each	of the fou	ur tanks foi	r steady-state	operation wi	th a fixed		
	fluid flow ra	te of so a	as to max	imize the y	vield of produc	t C4. Note (V	$(i/q_i) = \vartheta_i,$		
					a for the coefficient $5 (a)^{-1}$. The sum	cients in the	fixed by		
	n = 2.5; $k = 0.00625 \text{ [m}^3/(\text{kg mol}) \text{]}^{-1.5} \text{ (s)}^{-1}$; The units for k are fixed by								
	the constant 0.00625.								
	inoquality of			on, the var	lables, the equ	Lanty Constra	annis, the		
24			ahla two	crude oils	that have the	vields show	wn in the	03	
24	following ta	hla Baca			nd storage lim	itations prov	duction of	05	
	asoline ke	prosene	and fuel of	nil must he	limited as als	o shown in t	his table		
	There are n	no plant l	gasoline, kerosene, and fuel oil must be limited as also snown in this table.						
	as oils								
	aas oils.		millacion	s on the p		iner produce.	s such as		
	gas oils.						s such as		
	gas oils.		Volume pe	ercent yields	Maximum allow	able	s such as		
	gas oils.		Volume pe Crude #1	ercent yields Crude #2	Maximum allow product rate (bbl/day)	able	s such as		
	gas oils.	Gasoline	Volume pe Crude #1	ercent yields Crude #2	Maximum allow product rate (bbl/day) 6,000 2,400	able	s such as		
	gas oils.	Gasoline Kerosene Fuel oil	Volume pe Crude #1 70 6 24	crude #2	Maximum allow product rate (bbl/day) 6,000 2,400 12,000	able	s such as		
	gas oils. The profit	Gasoline Kerosene Fuel oil	Volume pe Crude #1 70 6 24	crude #2 31 9 60 31 9	Maximum allow product rate (bbl/day) 6,000 2,400 12,000 \$ 1.00/bbl an	able d on crude	#2 it is		
	gas oils. The profit \$0.70/bbl.	Gasoline Kerosene Fuel oil on proce	Volume pe Crude #1 70 6 24 essing cru e the opt	rcent yields Crude #2 31 9 60 ude #1 is timization	Maximum allow product rate (bbl/day) 6,000 2,400 12,000 \$ 1.00/bbl an problem to fir	able d on crude	#2 it is num daily		
	gas oils. The profit \$0.70/bbl. feed rates o	Gasoline Kerosene Fuel oil on proce Formulate f the two	Volume pe Crude #1 70 6 24 essing cru e the optic	rcent yields Crude #2 31 9 60 ude #1 is timization o this plant	Maximum allow product rate (bbl/day) 6,000 2,400 12,000 \$ 1.00/bbl an problem to fir	able d on crude	#2 it is num daily		
28.	gas oils. The profit \$0.70/bbl. feed rates o Solve the	Gasoline Kerosene Fuel oil on proce Formulate f the two following	Volume pe Crude #1 70 6 24 essing cru e the opt crudes to objectiv	rcent yields Crude #2 31 9 60 ude #1 is timization o this plant e function	Maximum allow product rate (bbl/day) 6,000 2,400 12,000 \$ 1.00/bbl an problem to fir using bound	able d on crude d the optim	#2 it is num daily	5	
28.	gas oils. The profit \$0.70/bbl. feed rates o Solve the Consider ini	Gasoline Kerosene Fuel oil on proce Formulate f the two following tial guess	Volume pe Crude #1 70 6 24 essing cru e the opt crudes to objectiv s as -5 an	rcent yields Crude #2 31 9 60 ude #1 is timization o this plant e function nd increme	Maximum allow product rate (bbl/day) 6,000 2,400 12,000 \$ 1.00/bbl an problem to fir using bound ent as 0.5. Sho	able d on crude d the optim ing phase a w the minim	#2 it is num daily algorithm.	5	
28.	gas oils. The profit \$0.70/bbl. feed rates o Solve the Consider ini	Gasoline Kerosene Fuel oil on proce Formulate f the two following tial guess	Volume pe Crude #1 70 6 24 essing cru e the opt crudes to objectiv s as -5 an	ercent yields Crude #2 31 9 60 ude #1 is timization this plant e function nd increme (x) = 2	Maximum allow product rate (bbl/day) 6,000 2,400 12,000 \$ I.00/bbl an problem to fir using bound ant as 0.5. Sho $x^3 + (5x)^2$	able d on crude d the optim ing phase a w the minim	#2 it is num daily algorithm. num three	5	
28.	gas oils. The profit \$0.70/bbl. feed rates o Solve the Consider ini iteration of t	Gasoline Kerosene Fuel oil on proce Formulate f the two following tial guess the algori	Volume per Crude #1 70 6 24 essing cru e the option crudes to objectives as -5 and ithm. f	ercent yields Crude #2 31 9 60 ude #1 is timization timization this plant e function nd increme (x) = 2	Maximum allow product rate (bbl/day) 6,000 2,400 12,000 \$ I.00/bbl an problem to fir using bound ant as 0.5. Sho $x^3 + (5x)^2$	able d on crude ad the optim ing phase a w the minim	#2 it is num daily algorithm. num three	5	
2B.	gas oils. The profit \$0.70/bbl. feed rates o Solve the Consider ini iteration of t List the re	Gasoline Kerosene Fuel oil on proce Formulate f the two following tial guess the algori lative ac	Volume pe Crude #1 70 6 24 essing cru e the opt crudes to objectiv s as -5 an ithm. <i>f</i>	ercent yields Crude #2 31 9 60 ude #1 is timization timization this plant e function nd increme (x) = 2. s and disa	Maximum allow product rate (bbl/day) 6,000 2,400 12,000 \$ 1.00/bbl an problem to fir using bound ant as 0.5. Sho $x^3 + (5x)^2$ advantage of	able d on crude d the optim ing phase a w the minim	#2 it is num daily algorithm. num three	5	

CHE5201

3A	Discuss the Necessary and sufficient conditions for the solution of multivariable object functions.	4				
3B	Develop a steepest decent algorithm to solve nonlinear optimization	3				
	problem.					
3C	In steepest ascent algorithm, show that the steepest ascent direction is	3				
	gradient itself.					
4A	Solve the following objective function using Interval halving method.	4				
	Consider initial search space [0 5]. Show minimum three iteration of the					
	algorithm. $f(x) = x^2 - 3x - 20$					
4B.	Consider the following problem:	4				
	Minimize: $f(x) = x_1^2 + x_2$					
	Subject to: $g_1(x) = x_1^2 + x_2^2 - 9 \le 0$					
	$g_2(x) = (x_1 + x_2^2) - 1 \le 0$					
	$g_3(x) = (x_1 + x_2) - 1 \le 0$					
	(a) Show that the constraint set form a convex region					
4C	(b) reasible region is closed set by plotting the constraints Classify the stationary points of	2				
	(a) $f(x) = -x^4 + x^3 + 20$					
	(b) $f(x) = x^3 + 3x^2 + x + 5$					
5A	Solve the following optimization problem using Lagrange multipliers method	5				
	Minimize $f(x) = 4x_1^2 + 5x_2^2$					
	subject to $2x_{1} + 3x_{2} - 6 = 0$					
5B.	Prepare a graph of the constraints and objective function, and solve the	5				
	following linear programming problem	-				
	Maximize $x_1 + 2x_2$					
	subject to $-x_1 + 3x_2 < 10$					
	$x_1 + x_2 \le 6$					
	$x_1 - x_2 \le 2$					
	$x_1 + 3x_2 \ge 6$					
	$x_1 + 5x_2 = 0$ $2x_1 + x_2 \ge 4$					
	$x_{1} > 0; x_{2} > 0$					
	$n_1 = 0, n_2 = 0$					

CHE5201

Page 3 of 3