Reg. No.

MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL

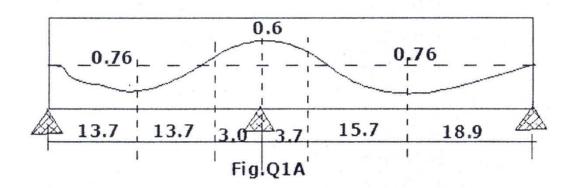
(A constituent institution of MAHE, Manipal)

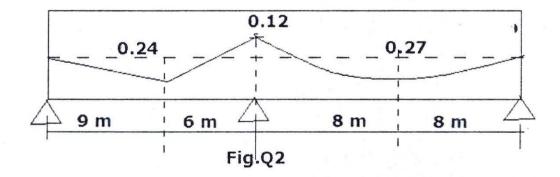
II SEMESTER M.TECH. (STRUCTURAL ENGINEERING) END SEMESTER EXAMINATIONS, APRIL/MAY 2018

SUBJECT: ADVANCED PRESTRESSED CONCRETE [CIE 5252] REVISED CREDIT SYSTEM

(19/ 04/ 2018)

Time: 3 Hours


MAX. MARKS: 50


Instructions to Candidates:

- ✤ Answer ALL the questions.
- ✤ Missing data may be suitable assumed.
- ♦ Use of IS 1343-2012, IS 784-2001, Authorized Design Aid are permitted

1A.	A two span continuous bridge girder is post-tensioned with a tendon consisting of twenty strands with fpk =1860 MPa. The profile of the tendon is as shown in Fig.Q1A. The tendon is stressed up to 76% fpk from one end and then anchored. The tendon properties are Ap = 2800 mm ² , Ep = 195,000 MPa, $\mu = 0.20$, K = 0.0020/ m. Calculate the expected elongation of the tendon after stretching and the value of prestressing force after anchorage slip of 6mm.	4
1B.	A bonded post-tensioned concrete beam has flanged section: top flange 450 x 200 mm, bottom flange 300 x 250 (depth) mm, web 150 x 600 depth mm. The beam is pre- stressed by tendons of area 1750 mm ² , located at 125 mm from the soffit (bottom surface) with an effective pre-stress of 1100 MPa. Tensile strength of tendon, fpk 11860 MPa. Grade of concrete is M60. Estimate the ultimate flexural strength by the method of IS 1343- 2012.	6
2.	A continuous prestressed-concrete rectangular beam 350mm x 1000 mm with bonded tendon is as shown in Fig.Q2. Locate the pressure line in the concrete due to prestress alone, not considering the dead load of the beam. Consider a prestress of 1112 kN. Also calculate the stresses in the concrete at mid-support section & mid-span BC with considering the dead load of the beam.	10
3.	A Composite tee beam is made up of a pre-tensioned rib 300mm thick and 900mm deep and a cast-in-situ slab of 150 mm thickness and 1200 mm width. The beam is simply supported over a span of 18 m to support an imposed load of 12 kN/m. Assume grade 40 concrete in precast web and slab and high strength wire of fpk = 1470 MPa. Assume long term loss in cable as 15%. Design the composite section and shear connections. Compute stresses at the critical section at various stages. The precast member is unpropped during the casting of the CIP portion.	10
4.	Design suitable cable profile for a PSC Portal Frame ABCD having column $AB = DC = 5m$ and beam $BC = 12 m$. The ends of the columns are fixed at A and D. The beam carries super imposed load of 18 kN/m. Assume same cross section 300 mm X 800 mm for both beam & column, M-45 grade concrete and strand with fpk, 1860 MPa. Calculate stresses in the beam at mid-section at service.	10

A non-cylindrical pre-stressed concrete pipe of internal diameter 1200 mm and length 5m, is required to with stand a working pressure of 1.6 N/mm². Design pipe thickness and longitudinal and circumferential pre-stressing forces, spacing of wires. Assume circumferential winding by the process of counter weight/break. Use high tensile wire of 5 mm diameter ultimate strength 1570 N/mm² and M-40 grade concrete. Assume: i) minimum compressive stress under working load to be 1.0 N/mm², ii) coat thickness as 5. 10 25 mm, iii) strength of concrete at winding 30 MPa and at Detensioning longitudinal 20MPa, iv) bedding angle = 120° & $\theta = 180^{\circ}$. Density of earth fill 18 kN/m³. Height of fill = 1 m. take Ct = 0.50. Calculate for the following circumferential pre-stressing requirement, i) circumferential prestressing condition (self weight + initial prestressing ii) site test condition (site etst pressure +self weight+ weight of water+earth fill + final prestress)

