

MANIPAL INSTITUTE OF TECHNOLOGY

MANIPAL (A constituent unit of MAHE, Manipal)

II SEMESTER M.TECH. (COMPUTER SCIENCE & ENGG) END SEMESTER EXAMINATIONS, APRIL 2018

SUBJECT: COMPILERS AND ADVANCED OPERATING SYSTEMS

[CSE 5201]

REVISED CREDIT SYSTEM (17/04/2018)

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates:

- ✤ Answer ALL the questions.
- ✤ Missing data may be suitable assumed.

1A.	In the lexical analysis phase, explain the two-buffer scheme that handles large lookaheads safely.	3
1B.	With an example, explain recursive descent parsing.	3
1C.	For the given grammar, construct a predictive parsing table. S \rightarrow A1B A \rightarrow 0A ϵ B \rightarrow 0B 1B C C \rightarrow 2C 3C ϵ	4
2A.	Explain the two ways by which we can handle reserved words that look like identifiers.	2
2B.	For the given grammar, eliminate left recursion. S \rightarrow X1Y X \rightarrow X0 2 Y \rightarrow Y0 Y1 3	2
2C.	For the given grammar, construct the LR(0) sets of items and the SLR parsing table. (Note: In the last production, comma is a valid terminal) B \rightarrow id P B \rightarrow id(E] P \rightarrow \epsilon P \rightarrow (E) E \rightarrow B E \rightarrow B,E	6
3A.	For the given grammar, obtain the semantic rules for evaluating an expression. $E \rightarrow TE'$ $E' \rightarrow +TE'$ $E' \rightarrow \epsilon$ $T \rightarrow (E)$ $T \rightarrow digit$ $E' \rightarrow -TE'$ Also draw the annotated parse tree for (9-3)+5	4
3B.	<pre>For the given C code, write the three address statements. Also show the quadruple & triple representations. found = 0; for (i = 0; i < 10; i++) { val = a[i]; if (val == 25) found = 1; }</pre>	3

3C	Generate code for the following sequence. Assume that s, i, and n are in memory locations. Also assume a simple target machine model. s = 0 i = 0 L1: if i > n goto L2 s = s + i i = i + 1 goto L1 L2:	3
4A	Distinguish between mobile code and mobile agents.	4
4B	With an example, explain Java object serialization.	6
5A	Explain the distributed object model.	4
5B	Explain the protocol used for Clock Synchronization in Wireless Networks.	4
5C	Explain the Token Ring algorithm for Mutual Exclusion.	2