Reg. No.

MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL

(A constituent Institution of MAHE, Manipal)

II SEMESTER M.TECH (POWER ELECTRONICS & DRIVES)

END SEMESTER EXAMINATIONS, APRIL 2018

SUBJECT: ADVANCED POWER ELECTRONIC CONVERTERS [ELE 5222]

REVISED CREDIT SYSTEM

Time: 3 Hours Date: 27 April 2018		Max. Marks: 50		
Instructions to Candidates:				
	 Answer ALL the questions. 			
	 Missing data may be suitably a 	assumed.		
1A.	Design a boost converter with i resistance is 4Ω ; switching frequ as 1% of their respective averag	input voltage being 12V; output voltage is iency of 20kHz. Assume the current and vol ge values.	s 20V; load tage ripple	(02)
1B.	If a cuk converter is used to mee respect to boost converter desig	et the specifications of Q1A, design and eva med in Q1A.	aluate with	(08)
2A.	Explain the procedure for design	ning an inductor.		(05)
2B.	Show that a buck-boost conve expressions for K and K_{crit} . Deriv	rter operates in DCM when K <k<sub>crit and <i>v</i>e the expression of converter voltage gain</k<sub>	derive the	(05)
3A.	A Flyback converter is fed with 10W resistive load. Draw the wa current and the current and volt	an input voltage of 12V. The converter d aveforms of load voltage, magnetizing curre tage across MOSFET/s.	rives a 5V, ent , source	(05)
3B.	An Isolated Full Bridge DC-DC converter drives a 5V, 10W re magnetizing current, source cur	converter is fed with an input voltage o esistive load. Draw the waveforms of loa rrent and the current and voltage across M	f 12V. The ad voltage, OSFET/s.	(05)
4A.	Represent the buck converter by averaging technique.	v its small signal equivalent circuit model u	sing circuit	(03)
4B.	If the Peak Current Mode Contr buck converter of Q4A, modify t peak current mode control.	rol, with slope compensation, is implement the equivalent circuit diagram of buck conv	nted in the verter with	(07)
5A.	Explain the motivation for the a	pplication of soft switching.		(02)
5B.	With the circuit diagrams and re ZCS L-Type Buck Converter. Der and the resonant capacitor volta	elevant waveforms explain the working of a rive the expressions of the resonant induct age.	a Resonant tor current	(08)