Reg. No.

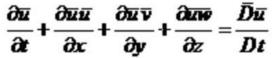
MANIPAL INSTITUTE OF TECHNOLOGY

(A constituent unit of MAHE, Manipal)

II SEMESTER M.TECH (THERMAL SCIENCES & ENERGY SYSTEMS/CAAD/MET) END SEMESTER EXAMINATION (REGULAR) APRIL 2018 SUBJECT: COMPUTATIONAL FLUID DYNAMICS (MME 5242) REVISED CREDIT SYSTEM

- Note: (i) Answer ALL questions
 - (ii) Missing data, if any, may appropriately be assumed and stated explicitly
 - (iii) Draw neat schematic sketches wherever applicable and appropriate
- 1A. Convert x–directional Navier-Stokes (Momentum) Equation (no derivation) using 04 scaling laws to deduce **scale-free equation** as given below:

$$\frac{\partial u'}{\partial t'} + u'\frac{\partial u'}{\partial x'} + v'\frac{\partial u'}{\partial y'} + w'\frac{\partial u'}{\partial z'} = -\frac{1}{F^2} - P\frac{\partial p'}{\partial x'} + \frac{1}{R}\left(\frac{\partial^2 u'}{\partial x'^2} + \frac{\partial^2 u'}{\partial y'^2} + \frac{\partial^2 u'}{\partial z'^2}\right)$$


where, prime signs indicate the corresponding scale-free properties and F and R represents the Dimensionless Froude and Reynold's Numbers where as $P = \frac{P_{\infty}}{\rho U_{\infty}}$

is the Non-dimensional Pressure Coefficient, with P_{∞} and U_{∞} being the free stream pressure and velocity and ρ is the density of the medium.

- 1B. Deduce the Velocity Correction Equations. Hence derive **Pressure Correction** 06 **Equation** for Convection dominated Diffusion in a 2-D incompressible flow.
- ^{2A.} Enumerate the **Basic Laws of Discretization** for Control Volume Method. 02
- 2B. Water is flowing in a pipe of diameter 25 mm. It enters the pipe with a temperature 08 of 150° C. The velocity at inlet is 8 m/s which can be assumed to remain constant along the pipe length. The diffusive flux (Γ) through the pipe can also be assumed to be constant at 850 kg/m/s. The length of the pipe is 800 mm. Water leaves the pipe at a temperature of 30° C. Apply the following discretization schemes and obtain the temperature distribution along the pipe using Control Volume **technique**. Use three equally spaced unknown control volumes to discretize the domain in each case.
 - (1) Central Difference Scheme (CDS)
 - (2) Upwind Differencing Scheme (UDS)
 - (3) Exact Analytical Method.
- 3A. Enumerate the advantages and disadvantages of Euler, Crank-Nicholson, and Pure 04 Implicit Numerical Methods.
- 3B. Derive the Non-dimensional GDE and its finite element discretization for a 2- 06 Dimensional steady state heat transfer in a **Square Plate** with uniform internal heat

generation and with all its edges subjected to constant temperature of T_∞.

- 4A. Derive the **Reynolds Transport Equation** and explain its analogy to Substantial 04 Derivative of a flow property.
- 4B. What is meant by Numerical False Diffusion? Explain the same in the case of 04 constant temperature hot and a cold fluid flowing in a non-aligned steady flow in a two-dimensional flow field.
- 4C. Give the mathematical Implementation of the following boundary conditions for a 02 typical CFD problem citing the example.
 - (1) Axisymmetric condition
 - (2) Wall condition
 - (3) Fully developed flow at the exit
 - (4) Inlet condition for compressible flow.
- 5A. A steel fin of thermal conductivity 45 W/m.K and having uniform rectangular cross 05 section 25mm X 20 mm and length 200 mm, is fitted to an engine head at 375°C. It is exposed to ambient convective air having convective heat transfer coefficient of 20 W/m².K. The average bulk temperature of the cooling air is 35°C. The fin can be treated as slender with negligible heat transfer from the open end face of the fin. Apply **Finite Difference Method** to solve temperature distribution assuming five equally spaced grids, undergoing steady one dimensional heat transfer.
- 5B Using time averaged parameters, derive the following Navier Stokes equation for a 05 general turbulent flow in the form,

