R	eg	Ν	0.

MANIPAL INSTITUTE OF TECHNOLOGY

MANIPAL (A constituent unit of MAHE, Manipal)

II SEMESTER M.TECH (CAAD/MET)

END SEMESTER EXAMINATIONS, APRIL 2018

SUBJECT: MECHANICS OF COMPOSITE MATERIALS [MME 5266]

REVISED CREDIT SYSTEM

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates:

- ✤ Answer ALL the questions.
- Missing data may be suitably assumed.
- Use of Mechanics of Composite materials datasheet is permitted.
- 1A. A rod consists of a binder and two types of filamentous reinforcement with 5 the following constituent properties:

Material	Density (g/cm³)	Weight (%)	Elastic modulus (GPa)	Tensile strength (GPa)
Binder	1.3	35	3.5	0.06
Fiber A	2.5	45	70	1.4
Fiber B	1.6	20	6	0.45

Assume that the cross-sectional area of the rod as 10 cm². Determine

i). What maximum load can this rod carry without rupturing any of the constituents?

- ii). What is the maximum load the rod can carry?
- iii). What constituent will rupture last?
- Sketch and explain Resin Transfer molding process of manufacturing 5 composites.
- 2A. A thin plate of 50 mm x 50 mm size made up of FRP composite is subjected to tensile stress of 155 MPa along X-direction. The plate is somehow restrained from any deformation in Y-direction. The fibers of FRP composite are orientated at an angle of 30⁰ with X-direction. Determine the following:
 i) the strain in the material along X-direction.

ii) the stress that must be applied to restrain from deformation along Ydirection. Given: For FRP composite with fibers aligned along X-direction.

$$S = \begin{bmatrix} 7.25 & -2.17 & 0 \\ -2.17 & 111.61 & 0 \\ 0 & 0 & 140.85 \end{bmatrix} (TPa)^{-1}$$

- 2B. Sketch and explain Stir Casting process of manufacturing composites. 4
- 2C. List at least four differences between thermoset and thermoplastic polymer2 matrices.
- 3A. Derive expression for poisson's ratio in global coordinate system as a 3 function of fiber orientation and engineering properties in fiber co-ordinate system.
- **3B.** Determine the stiffness and compliance components of aluminum with the **3** following properties: E= 69 k N/mm² and v=0.3
- 3C. Sketch and explain two types of microbuckling failure modes observed in 4 unidirectional composite lamina.
- 4A. A three ply laminate [+45/0/+45] is subjected to forces Nx=1000 N/mm, Ny=
 200 N/mm and Nxy=0. The +45⁰ layer is 3mm thick and 0⁰ layer is 6 mm thick. Compute stresses and strains in the individual plies. Given: for fibers aligned along global X-axis,

$$Q = \begin{bmatrix} 20 & 0.7 & 0 \\ 0.7 & 2.0 & 0 \\ 0 & 0 & 0.7 \end{bmatrix} GPa$$

- 4B. Using relevant standard, explain how the tension test is conducted on a 4 unidirectional laminate.
- 5A. Determine [A], [B] and [D] matrices for a quassi-isotropic [-60/0/+60] laminate 6 with the following material properties:
 E₁=140 GPa, E₂=10 GPa, G₁₂=6 GPa and υ₁₂ = 0.3. The thickness of each

lamina is 0.2 mm.

5B. A unidirectional lamina is subjected to biaxial stresses: $\sigma_x = 3\sigma_0$ and $\sigma_y = 2\sigma_0$. **4** The X-axis is inclined at 60⁰ to the fiber direction. The material properties are as follows: $F_{1T} = F_{1C} = 2F_{2C} = 4F_6 = 8F_{2T} = 500$ MPa. Determine σ_0 at failure of the lamina according to Maximum stress theory and Deviatoric strain energy theory.