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1A. Write the rule for Estimating Training Values in the design of machine learning system.    (4 Marks) 

In the learning problem, the only training information available to our learner is whether the game was won or lost. 

We require training examples that assign specific scores to specific board states. It is easy to assign a value to board 

states that correspond to the end of the game. It is difficult to assign training values to the intermediate board states.  

One simple approach to estimate training values for intermediate board states:  

• Assign the training value of Vtrain(b) for any intermediate board state b to be V’ (Successor(b)) 

 

 

Where V’ is the leaner’s current approximation to V and (Successor (b) is next board state following b. 

 

 

 

1B. Write the approaches involved in adjusting the weights to best fit the set of training examples.  (6 Marks) 

We need to choose the weights wi to best fit the set of training examples { < b, Vtrain (b) > }. Best fit minimize the 

square error E between V and V’. 

                 

The LMS training rule: For each training example {< b, Vtrain (b) >} 

• Use current weight to calculate V’ (b) 

• For each weight wi  update it as 

• Here ɳ is a small constant (e.g., 0.1) that moderates the size of the weight update 

• If the error Vtrain (b) – V’(b) - is zero, no weights are changed  

If Vtrain (b) – V’(b) is +ve the each weight is increased in proportion to the value of its corresponding feature 

 

 

 



2. Implement Candidate-elimination algorithm to obtain most general and most specific hypotheses for the training 

examples given in the following table         (10 Marks) 

 

 

 

          (1 Marks) 

 
          (1 Marks) 

 

 
         (2 Marks) 

 

 
         (2 Marks) 

 



 
          (2 Marks) 

 

 
                                                        (2 Marks) 

 

 

 

3. State and prove the ε-Exhausted Version Space theorem to determine the number of training examples required 

to reduce this probability of failure below some desired level δ.      (10 marks) 

 

       ε-Exhausted Version Space 

     (2 Marks) 



    (2 Marks) 

Proof: 

• Let hl, h2, . . . hk be all the hypotheses in H that have true error greater than ε with respect to c.                        

[ Hbad = {hl, h2, . . . hk} ] 

• We fail to ε-exhaust the version space if and only if at least one of these k hypotheses happens to be 

consistent with all m independent random training examples. 

• The probability that any single hypothesis having true error greater than ε would be consistent with one 

randomly drawn example is at most (1 - ε). 

   (4 Marks) 

  (2 Marks) 

 

 

 

 

 

 

 



4. What is Agnostic Learning? Obtain the equation for number of training examples “m” required in this case.                        

                                                                                                                                                                                 (7 Marks) 

 

Agnostic Learning: 

                              (2 Marks) 

• Every hypothesis in H having training error = zero and true error of at most ε. 

• If H does not contain the target concept c, then a zero-error hypothesis cannot always be found 

• In this case, our learner L is to output the hypothesis from H that has the minimum error over the training 

examples 

• A learner that makes no assumption that the target concept is representable by H and that simply finds the 

hypothesis with minimum training error, is often called an agnostic learner. 

       (2 Marks) 

 
 

• The Hoeffding bounds state that if the training error errorD(h) is measured over the set D containing m randomly 

drawn examples, then 

 

 

 

 

 

 

 

(3 Marks) 

 

 

5A. Define Vapnik-Chervonenkis (VC) Dimension            (3Marks) 

       Vapnik-Chervonenkis Dimension: 

       An unbiased hypothesis space shatters the entire instance space. The larger the subset of X that can be shattered,   

      the more expressive the hypothesis space is, i.e. the less biased. 

 

        Definition:  

The Vapnik-Chervonenkis dimension, VC(H) of hypothesis space H defined over instance space X is the size of the 

largest finite subset of X shattered by H. If arbitrarily large finite subsets of X can be shattered then VC(H) = ∞ 

       

 

 

 

 

 

 

 



 

5B. Consider a medical diagnosis problem in which there are two alternative hypotheses:                                                                                             
       (1) the patient has a particular disease (denoted by cancer)                                                                                                    
       (2) the patient does not (denoted by ¬cancer) 

Prior knowledge over the entire population of people only 0.008 have this disease. The available data is from a 

particular laboratory test with two possible outcomes (positive and negative). Furthermore, the lab test is only 

an imperfect indicator of the disease. The test returns a correct positive result in only 98% of the cases in which 

the disease is actually present and a correct negative result in only 97% of the cases in which the disease is not 

present. In other cases, the test returns the opposite result. Suppose, a new patient is observed for whom the 

lab test returns a positive result. Should you diagnose the patient as having cancer or not?          (10 Marks) 

 

 

 
            (3 Marks) 

 
            (4 Marks) 

                                             (3 Marks) 
 
 
 

6A. Derive Bayes Optimal Classifier.          (4 Marks)  
 

Most probable classification of the new instance is obtained by combining the predictions of all hypotheses, weighted 
by their posterior probabilities. If the possible classification of new example take any value vj from some set V, then 
the probability P(vjlD) for new instance is, 

 

                                      
     
      The optimal classification of the new instance is the value vj, for which P (vj|D) is maximum. 
      



     Bayes optimal classification: 
 

 
 

    Any system that classifies new instances according to above equation is called a Bayes optimal classifier or Bayes   

    optimal learner. 

 

 
6B. Consider a hypothesis space containing three hypotheses: h1, h2, and h3. Posterior probabilities of h1, h2, and h3  

given the training data are 0.4, 0.3, and 0.3 respectively. New instance x is encountered, which is classified positive 
by h1, but negative by h2 and h3. Use Bayes Optimal Classifier to obtain the most probable classification of the new 
instance given the training data?                         (6 marks) 
 
 
 
 
 
 

 
 
 
 

7. Expert assigned some basic outcomes to the nodes given in the table below for Bayesian Networks shown in the 
following figure. What’s the probability that it’s raining when the yard is wet?     (10 Marks) 

 

 

 

 

 

 

 

 

 

 



 
 

 

 

 

 

 



 

 

  “Given that the yard is wet, what’s the probability that it’s raining?” 

  Start with what you know.  

◦ The yard is wet (True), and we want to know if it’s raining (True).  

◦ The only variable you’re not certain about is the state of the hose; it could be true or false as it stands. 

  The joint probability function: 

  p(Y=True, H=True, R=True) 

  p(Y=True|H=True, R=True) × p(H=True|R=True) × p(R=True) 

  Multiply the values of the wet Yard probability, where the values for Hose and Rain are also true, by the probability 

of Hose being true with the value of Rain being true, by the probability of Rain being true. 

   

  The values you need are 

  0.99 (Y=T, H=T, R=T) × 0.01 (H=T, R=T) × 0.2 (R=T) = 0.00198 

  Next, work out the value of the probability if the hose was false.  

   

  This is the variable you don’t know, so it’s important to work out the probability for it. 

  p(Y=True|H=False, R=True) × p(H=False|R=True) × p(R=True) 

0.8 × 0.99 × 0.2 = 0.1584 

  T,T,T = we know is 0.00198 

  T,F,T = we know is 0.1584 

  T,T,F = 0.9 × 0.4 × 0.8 = 0.288 

  T,F,F = 0.0 × 0.6 × 0.8 = 0.0 

 

So the final equation looks like this: 

   

 

 

 

 

 

= 0.3577   = 35.77% 



8. Write the algorithm and explain Distance-Weighted Nearest Neighbor Learning algorithms for learning the discrete-
valued and real-valued target functions.        (5+5 Marks) 
 
 

 
 
Distance-Weighted Nearest Neighbor Learning 
One refinement to the k-NN algorithm is to weight the contribution of each of the k neighbors according to their 
distance to the query point xq, giving greater weight to closer neighbors. 
 

 
 

 
 
 
   
 
 
 
 
 
 



9. Explain the learning concept of Case-Based Reasoning with suitable example. (10 Marks) 
•        It is an approach  

– To model the way human think 
– To build intelligent systems 

• Basic Idea: 
– store experiences made  as cases 
– solving a new problem do the following 

• recall similar experiences (made in the past) from memory 
• reuse that experience in the context of the new situation(reuse it partially, completely or 

modified) 
• new experience obtained this way is stored to memory again 

• Solve new problems by selecting cases used for similar problems and by (eventually) adapting the belonging 

solution. 

                                
 
 

 
 

 
 
 



 
 
 

 
 

 
 



 

 
 
 

10. Find the covariance matrix and principal components (PCs) for the data showing relationship between numbers of 
hours studied against the mark received.        (10 Marks) 

 
 

 

 
 
 
 
 



H M (Hi - H') (Mi-M') (Hi-H')2 (Mi-M') 
(Hi-H')*(Mi-

M') 

9 39 -4.91667 -23.42 24.17361 548.4964 115.1483333 

15 56 1.083333 -6.42 1.173611 41.2164 -6.955 

25 93 11.08333 30.58 122.8403 935.1364 338.9283333 

14 61 0.08 -1.42 0.0064 2.0164 -0.1136 

10 50 -3.92 -12.42 15.3664 154.2564 48.6864 

18 75 4.08 12.58 16.6464 158.2564 51.3264 

0 32 -13.92 -30.42 193.7664 925.3764 423.4464 

16 85 2.08 22.58 4.3264 509.8564 46.9664 

5 42 -8.92 -20.42 79.5664 416.9764 182.1464 

19 70 5.08 7.58 25.8064 57.4564 38.5064 

16 66 2.08 3.58 4.3264 12.8164 7.4464 

20 80 6.08 17.58 36.9664 309.0564 106.8864 

167 749 153.08 686.58 524.9651 4070.917 1352.419267 

13.91667 62.41667   43.74709 339.2431 112.7016056 

 
 

cov (x, y) = [
43.75 112.7
112.7 339.24

]                    

 

Eigen values 𝜆 = (
377.31
5.6728

)            

 
Eigenvector with the highest eigenvalue is the principle component of the data set. 
 

Solving for Eigen vectors corresponding to λ1 = (
1

2.9
)     

 

Solving for Eigen vectors corresponding to λ2 = (
1

0.34
)  


