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1A. Write the rule for Estimating Training Values in the design of machine learning system. (4 Marks)

In the learning problem, the only training information available to our learner is whether the game was won or lost.
We require training examples that assign specific scores to specific board states. It is easy to assign a value to board
states that correspond to the end of the game. It is difficult to assign training values to the intermediate board states.

One simple approach to estimate training values for intermediate board states:
* Assign the training value of Vigin(b) for any intermediate board state b to be V’ (Successor(b))

Rule for estimating training values,
V,ain(0) < V(Successor (b))

Where V'’ is the leaner’s current approximation to V and (Successor (b) is next board state following b.

1B. Write the approaches involved in adjusting the weights to best fit the set of training examples. (6 Marks)

We need to choose the weights w;to best fit the set of training examples { < b, Virin (b) > }. Best fit minimize the
square error E between V and V'.

E

> (Virain(B) — V(B))?

{b. Virain (B))E fraining examples

The LMS training rule: For each training example {< b, Virain (b) >}
* Use current weight to calculate V’ (b)
* For each weight w; update it as
* Herenis asmall constant (e.g., 0.1) that moderates the size of the weight update
* If the error Vinin (b) — V’(b) - is zero, no weights are changed

If Virain (b) = V’(b) is +ve the each weight is increased in proportion to the value of its corresponding feature



2. Implement Candidate-elimination algorithm to obtain most general and most specific hypotheses for the training
examples given in the following table (10 Marks)

Example  Sky  AirTemp Humidity @~ Wind  Water  Forecast  EnjoySport

1 Sunny  Warm Normal  Strong Warm ~ Same Yes
2 Sunny  Warm High  Strong Warm  Same Yes
3 Rainy Cold High  Strong Warm  Change - No
4 Sunny  Warm High Strong  Cool  Change Yes
GO0 —{<?,?,7,2,7, 7=}
Initialization
S0 — {<0,0,0,0,0,8>} |
(1 Marks)
l d1 = <Sunny, Warm, Normal, Strong, Warm, Same:> ‘
Iteration 1

G1—{<?,?,2,?,?, 7>}

‘ 81 — {< Sunny, Warm, Normal, Strong, Warm, Same >} |

(1 Marks)

d2 = <Sunny, Warm, High, Strong, Warm, Same:>>

Iteration 2 G2 — {<?,7,2,2,2, 7>}

52 — {< Sunny, Warm, ?, Strong, Warm, Same >}

consistent l l

l d3 = <Rainy, Cold, High, Strong, Warm, Change:> ‘
lteration 3

(2 Marks)

[ 83 — {< Sunny, Warm, ?, Strong, Warm, Same >} ‘

G3 — {<Sunny, ?L?, 2,2, 7>, <72, Warrl'l, ?,?,7, 7>, =:?., ?, 7, ?, Same>}
H"“‘HH e -

T -

| G2 —{<?,2,7?,2,2, 2>}

(2 Marks)



| 83 — {< Sunny, Warm, ?, Strong, qum, nge =} |

\ G3 — {<Sunny, ?, 2, ?, 2, ?>, <?, Warm, ?, 2, ?\?:@, 2, sim@
]

l d4 = <Sunny, Warm, high, Strong, Co'ol, CI';an e I

Iteration 4

[ 84 — {< Sunny, Warm, ?, Strong, ?, ? =} [

/

| G4 — {<Sunny, 2, 2,2, 2, 7>, <?, Warm, 2, 2, 2, 7>}
-

| G3 — {<Sunny, 2, 2,2, 2, 2>, <2, Warm, 2, 2, 2, ?>,<2, 2, 2, 2, Same>} |

(2 Marks)
Resulting Version Space
S: | { <Sunny, Warm, ?, Strong, ?, 7>}
..-f"'_)-—,(f EHH T

.-'"_f h Hﬁ'"\--_

,.«-""' M--"'“'m-_

<Sunny, 7, 7, Strong, 7, 7> <Sunny, Warm, 7, 7, 72, 7> 7, Warm, ?, Strong, 7,

™. /’ \ /

G:| {<Sunny, 7.7, 72 7. 7>, <? Warm, 7. 7, 7, 7>}
(2 Marks)

3. State and prove the e-Exhausted Version Space theorem to determine the number of training examples required
to reduce this probability of failure below some desired level 6. (10 marks)

e-Exhausted Version Space

Definition: The version space V' .Sy p is said
to be e-exhausted with respect to ¢ and D, if
every hypothesis h in V.Sg p has ervor less
than ¢ with respect to ¢ and D.

(Vh € VSy.p) errorp(h) < e (2 Marks)



Theorem: [Haussler, 1988].
If the hypothesis space H is finite, and D is a
sequence of m > 1 independent random
examples of some target concept ¢, then for
any 0 < e < 1, the probability that the
version space with respect to I{ and D is not
e-exhausted (with respect to ¢) is less than

|[H e (2 Marks)

Proof:

* Leth, h, ... hcbe all the hypotheses in H that have true error greater than € with respect to c.
[ Hoad = {hy, ha, ... hi} ]

*  We fail to e-exhaust the version space if and only if at least one of these k hypotheses happens to be
consistent with all m independent random training examples.

* The probability that any single hypothesis having true error greater than € would be consistent with one
randomly drawn example is at most (1 - €).

* Probability that this hypothesis will be consistent with m independently drawn
examples is at most (1 -¢)™

* Given that we have k hypotheses with error greater than g, the probability that at
least one of these will be consistent with all m training examples is at most
k(1 —¢g)m

since kis £ |H|, thisis at most H(1 — &)™

= We use a general inequality stating that if 0< € < 1; then then (1 - €) < e®.

k(1 —€)" <|H|(1 —€)" <|H|e™™"

(4 Marks)

Let us use this result to determine the number of training examples
required to reduce this probability of failure below some desired level 6.

|Hle™*™ <&
Rearranging terms to solve for m, we find
1
m = ;(lnIHI +1n(1/3))

* Number of training examples m is sufficient to assure that any

consistent hypothesis will be probably approximately correct.
(2 Marks)



4. What is Agnostic Learning? Obtain the equation for number of training examples “m” required in this case.
(7 Marks)

Agnostic Learning:

m > ~(in|H| +In(1/5)
€ (2 Marks)
* Every hypothesis in H having training error = zero and true error of at most €.
* If Hdoes not contain the target concept ¢, then a zero-error hypothesis cannot always be found
* Inthis case, our learner L is to output the hypothesis from H that has the minimum error over the training
examples
* Alearner that makes no assumption that the target concept is representable by H and that simply finds the
hypothesis with minimum training error, is often called an agnostic learner.
(2 Marks)

So far, assumed ¢ € H

Agnostic learning setting: don’t assume ¢ € H
* The Hoeffding bounds state that if the training error errorp(h) is measured over the set D containing m randomly
drawn examples, then
—2me?
Prerrorp(h) > errorp(h) + €] <e
' —Imel
Pr[(3h € H)(errorp(h) > errorp(h) +¢)] < |Hle 2me

m> ;?GH}HI +1n(1/8))

(3 Marks)

5A. Define Vapnik-Chervonenkis (VC) Dimension (3Marks)
Vapnik-Chervonenkis Dimension:
An unbiased hypothesis space shatters the entire instance space. The larger the subset of X that can be shattered,
the more expressive the hypothesis space is, i.e. the less biased.
Definition:

The Vapnik-Chervonenkis dimension, VC(H) of hypothesis space H defined over instance space X is the size of the
largest finite subset of X shattered by H. If arbitrarily large finite subsets of X can be shattered then VC(H) =



5B. Consider a medical diagnosis problem in which there are two alternative hypotheses:
(1) the patient has a particular disease (denoted by cancer)
(2) the patient does not (denoted by -cancer)

Prior knowledge over the entire population of people only 0.008 have this disease. The available data is from a
particular laboratory test with two possible outcomes (positive and negative). Furthermore, the lab test is only
an imperfect indicator of the disease. The test returns a correct positive result in only 98% of the cases in which
the disease is actually present and a correct negative result in only 97% of the cases in which the disease is not
present. In other cases, the test returns the opposite result. Suppose, a new patient is observed for whom the
lab test returns a positive result. Should you diagnose the patient as having cancer or not?

& (positive) and < (negative)

P(cancer) = .008 P(—=cancer) = 0.992
P(@®|ecancer) = .98 P(&|eancer) = .02

P(@|—ecancer) = .03  P(S|-ecancer) = .97

P(&|cancer)P(cancer) = (.98).008 = .0078
P(&@|—cancer)P(—cancer) = (.03).992 = .0208
= hprap = —cancer

the exact posterior probabilites can be determined by normalizing
the above properties to 1

o) — 0078 _ <
P(cancer|s) = Do roozes = -21
P(—cancer|s) = % =.70

— the result of Bayesian inference depends strongly on the prior
probabilities, which must be available in order to apply the method
directly

6A. Derive Bayes Optimal Classifier.

Most probable classification of the new instance is obtained by combining the predictions of all hypotheses, weighted
by their posterior probabilities. If the possible classification of new example take any value v; from some set V, then

the probability P(v;ID) for new instance is,

P(v;iD) = Y P(v;ih:)P(hi| D)
h;eH '

The optimal classification of the new instance is the value v;, for which P (v;| D) is maximum.

(10 Marks)

(3 Marks)

(4 Marks)

(3 Marks)

(4 Marks)



Bayes optimal classification:

argmax » ° P(v;|h) P (#;|D)

viey h;jcH

Any system that classifies new instances according to above equation is called a Bayes optimal classifier or Bayes

optimal learner.

6B. Consider a hypothesis space containing three hypotheses: h;, h;, and hs. Posterior probabilities of h;, h,, and h;
given the training data are 0.4, 0.3, and 0.3 respectively. New instance x is encountered, which is classified positive
by h;, but negative by h2 and h3. Use Bayes Optimal Classifier to obtain the most probable classification of the new

instance given the training data?

argmax )
v €(@.0} peH

P(v;lh;)P(h;|D) = ©

(6 marks)

To illustrate in terms of the above example, the set of possible classifications
of the new instance is V = {®, ©}, and

Posterior
probabilities
of these
hypotheses

therefore

P(h|D) = .4,
P(hy|D) = .3,
P(h3|D) = .3,

P(©lh) =0, P(®lhy) =1
P(©lhy) =1, P(®lh2) =0
P(©lh3) =1, P(®lh3) =0

Y P(@lhi) P(hi|\D) = .4

ﬁfEH

Z: P(©lh) P(h;|D) = .6

hiel

New instance V
is classified

as +ve and —ve.

(1*.4+0%.3+0%.3=0.4)

(0*.4+1* 3+1* .3 = 0.6)

7. Expert assigned some basic outcomes to the nodes given in the table below for Bayesian Networks shown in the
following figure. What'’s the probability that it’s raining when the yard is wet?

YARD

(G
5

(10 Marks)

Hose Rain True False
False False 0.0 1.0
False True 0.8 0.2
True False 09 0.1
True True 0.99 0.01




Value of Rain Node True False
False 04 0.6
True 0.01 0.99
True False
0.2 0.8

Assigning Probabilities

Probability values are between 0 and 1

' ™\ /" ™
Expert assign some basic outcomes to the nodes. |j' Ram ( YardWet |

Node = Rain (It doesn’t have any parent nodes.) N\ \ j

.
_ | Huse
\ /

True False N
A basic Bayesian Network

0.2 08

Hose node: (uses the Rain node as a parent node)
- RN

> Need to assign probabilities for each of the outcomes of '\ /
the parent node. I: Rain l-—* YardWet |

N \/

Value of Rain Node True False _
| Hose |

False 04 0.6 '\\ /;

True 001 099 A b‘;_sic_Bayesian Network
Node: Yard, which has two parents: Rain and Hose. You
need to ensure that all the outcomes are taken into {/"'_""‘\ /"’_""‘\,
account I: Rain p—:— YardWet :

YARD

Hose Rain True False

False False 0.0 1.0 ; Hose |

False True 0.8 0.2 ./

True False 09 0.1 A basic Bayesian Network

True True 0.99 0.01




“Given that the yard is wet, what’s the probability that it’s raining?”
Start with what you know.
o The yard is wet (True), and we want to know if it’s raining (True).
o The only variable you’re not certain about is the state of the hose; it could be true or false as it stands.
The joint probability function:
p(Y=True, H=True, R=True)
p(Y=True|H=True, R=True) x p(H=True|R=True) x p(R=True)

Multiply the values of the wet Yard probability, where the values for Hose and Rain are also true, by the probability
of Hose being true with the value of Rain being true, by the probability of Rain being true.

The values you need are
0.99 (Y=T, H=T, R=T) x 0.01 (H=T, R=T) x 0.2 (R=T) = 0.00198

Next, work out the value of the probability if the hose was false.

This is the variable you don’t know, so it’s important to work out the probability for it.
p(Y=True|H=False, R=True) x p(H=False|R=True) x p(R=True)

0.8x0.99x0.2=0.1584

T,T,T = we know is 0.00198

T,F,T = we know is 0.1584

T,T,F=0.9x0.4x0.8=0.288

TIFIF = 00 X 06 X 08 = 00

So the final equation looks like this:

0.00198 4-0.1584
0.00198 +0.288 +0.1584 + 0.0

=0.3577 =35.77%



8. Write the algorithm and explain Distance-Weighted Nearest Neighbor Learning algorithms for learning the discrete-
valued and real-valued target functions. (5+5 Marks)

Training algorithm:
e For each training example (x. f(x)), add the example to the list rraining e xampies
Classification algorthm:
e Given a query instance x, to be classified.
e Let x;...xp denote the k instances from Zraining examples that are nearest o x,
e Return
j(xq) = 2

where 8(a. b) = | if @ = b and where é(a, b) = O otherwise.

Distance-Weighted Nearest Neighbor Learning
One refinement to the k-NN algorithm is to weight the contribution of each of the k neighbors according to their
distance to the query point x,, giving greater weight to closer neighbors.

X
f(xg) < argmax } _wis(v, f(x))

reV i—1

1

Wi s d (xg, X;)°

&
f(xg) < argmax Z wid(v, f(x;))

veV
For discrete ,:>
Output

i=l1

1
. d(x,, x;)?

k
2 25:1 w; f(x;)
For continuous I (-tq) = %
Output z;.-: | Wi




9.

Explain the learning concept of Case-Based Reasoning with suitable example. (10 Marks)

It is an approach

— To model the way human think
— To build intelligent systems
Basic ldea:
— store experiences made = as cases
— solving a new problem do the following
* recall similar experiences (made in the past) from memory
* reuse that experience in the context of the new situation(reuse it partially, completely or
modified)
* new experience obtained this way is stored to memory again
Solve new problems by selecting cases used for similar problems and by (eventually) adapting the belonging
solution.

Case Base

New Problem Store

Similarit
New Y >

Case

New Solution

‘ Underlying ﬁ;;sumptinn: Similar

_Solution _

Solution

problems have similar solutions!

achine

Contents of a Case

Mandatory Optionally
problem part context
solution part pointer to other relevant cases
solution quality assessment
steps of the solution

New Problem (Query) has To Be Solved

Problem (Symptoms):
- Problem : break light does not work
- Car :Audi 80

- Year 21990
- Battery Voltage :12.6V
- State of Lights ok

- State of Light Switch :

We make several observations in the current situation
observations define a new problem

not all attribute values have to be known

Note: The new problem is a “"case” without solution part



Solving a New Diagnostic Problem

Problem (Symptoms):

Compare the new [aSatll break light does not work
problem with each | C'ar Audi 80
nd select the [l 1990
Case and SEIECt INE pup NI 12.6V
most similar one! RSP Lights s

= CASE1 State of Light Switch

Questions

When are two cases similar?

How to rank the cases according to their similarity?
How to reuse the solution of the corresponding case?

Note

Similarity is the most important concept in CBR.
Similarity may be assessed based on the similarity of
each feature, while the importance of different
features may vary (feature weighting).

Problem (Symptoms):

L8 em frontlight does not work
g
O Solution:

- Diagnosis . front light fuse defect

- Repair :repair frontlight fuse

Problem (Symptoms):

- Problem break light does not w

gl New Solution:

=1 s - Diagnosis : break light fuse defect
- B ﬂ y v R v
- sraaf:éf L?;t:zg: - Repair : repair break light fuse

- State of Light Switch

™
Q
n
©
&)

Solution

Problem (Symptoms):
- Problem : break light does not work
- Car : Audi A80

- Year : 1990
- Battery Voltage :12.6V
- State of Light : ok

- State of Light Switch :

Solution:
- Diagnosis : break light fuse defect
- Repair : replace break light fuse




Reuse and Retain

+ Reuse
— adapt the solution

- how do differences
in the problem affect
the solution

Problem (Symptoms)
obier break hght does not

+ Retain

— if diagnosis is correct:
store new case

— add case to case base

Case 3

- Diagnosis : break light fuse defect
- Repair : replace break light fuse

10. Find the covariance matrix and principal components (PCs) for the data showing relationship between numbers of

hours studied against the mark received. (10 Marks)
Hours(H)  Mark(M)
Data 9 39
15 56
25 93
14 61
10 50
18 75
0 32
16 85
5 42
19 70
16 66
20 80

* The covariance matrix has 3 rows and 3 columns, and the values are
this:

cov(r,r) cov(r,y) cov(r,z)
('rﬂ!fgj.;r‘) r'()'f"(,fj-!_}) cov(y. z)

cov(z,r) covlz,y) cov(z, z)

(:1



H M (Hi-H) | (Mi-M') | (Hi-H')2 | (Mi-M') (H""I'\',I):;(M"
9 39 | -4.91667 | -23.42 | 24.17361 | 548.4964 | 115.1483333
15 56 | 1.083333 | -6.42 | 1.173611 | 41.2164 -6.955
25 93 | 11.08333| 30.58 | 122.8403 | 935.1364 | 338.9283333
14 61 0.08 142 | 00064 | 2.0164 -0.1136
10 50 3.92 | -12.42 | 153664 | 154.2564 |  48.6864
18 75 4.08 12.58 | 16.6464 | 158.2564 | 51.3264
0 32 13.92 | -30.42 | 193.7664 | 925.3764 | 423.4464
16 85 2.08 2258 | 43264 |500.8564 | 46.9664
5 42 892 | -20.42 | 79.5664 | 416.9764 | 182.1464
19 70 5.08 758 | 25.8064 | 57.4564 38.5064
16 66 2.08 358 | 43264 | 12.8164 7.4464
20 80 6.08 17.58 | 36.9664 | 309.0564 | 106.8864
167 749 153.08 | 686.58 | 524.9651 | 4070.917 | 1352.419267
13.91667 | 62.41667 43.74709 | 339.2431 | 112.7016056
cov (x y) = [4375 1127
1127 339.24

377.31)

Eigen values A = (5 6728

Eigenvector with the highest eigenvalue is the principle component of the data set.

Solving for Eigen vectors corresponding to Al = (219)

Solving for Eigen vectors corresponding to A2 = (0 134)



