Question Paper

Exam Date & Time: 23-Apr-2018 (10:00 AM - 01:00 PM)

MANIPAL ACADEMY OF HIGHER EDUCATION

SCHOOL OF INFORMATION SCIENCES SECOND SEMESTER Master of Engineering - ME (EMBEDDED SYSTEMS) DEGREE EXAMINATION APRIL 2018 Monday, 23 April 2018 Time : 10:00 am to 1:00 pm Digital Signal Processing [ESD 602]

Marks: 100

Duration: 180 mins.

Answer all the questions.

1)	Find the 8-point DFT of $x(n) = 2^n$ for $n = 0$ to 7, using DIT- FFT algorithm. Using this result, find the DFT of the sequence $y(n)$ where $y(n) = 2^{(n+4)}$ for $n = 0$ to 3 and $y(n)$	(10)
	$= 2^{(n-4)}$ for n = 4 to 7	
2)	Realize the following system functions using Direct form-I, Direct form-II, Cascade / Parallel form $H(z) = \left[(z^{-2} + z^{-1} + 1) / (z^{-2} - 1) \right] + \left[(z^{-1} + 1) / (z^{-2} + 1) \right]$	(10)
	$2z^{-1} + 2$	
3)	Implement the frequency sampling structure for the following impulse responses $h(n) = 2\delta(n) + 0.5\delta(n-1) + 0.5\delta(n-7)$	(10)
4)	Design an FIR linear phase lowpass filter using windows to meet the following specifications. $0.99 < H(e^{jw}) \le 1.01;$ for $0 \le 0.99 < H(e^{jw}) \le 1.01;$	(10)
	$ w \leq 0.19 \pi$	
	$ H(e^{jw}) \le 0.01;$ for $0.21 \pi \le w $	
	$\leq \pi$.	
5)	Design using impulse invariance technique and realize a Chebychev lowpass digital filter whose passband magnitude is to be within 1 dB for frequencies below 0.2π	(20)
	rad/sec and stopband attenuation is to be greater than 15 dB for frequencies above 0.3π rad/sec. Assume a sampling	
6)	frequency of 1 Hz. Provide the direct-form FIR filter structures of decimator	(10)
-,		(==)

and interpolator. What are the problems in the implementation? How do you overcome these problems? Also provide the linear phase structure.

- ⁷⁾ Explain how multirate signal processing can be used in the ⁽¹⁰⁾ analysis and synthesis of speech signals in subband coding.
- ⁸⁾ Explain LMS adaptive algorithm. Explain how LMS adaptive ⁽¹⁰⁾ algorithm is made use to make the Weiner Predictor Configuration adaptive based on the steepest descent technique.
- ⁹⁾ Draw the architecture of a TMS320C6X DSP processor and ⁽¹⁰⁾ give the functionality of each of the block

-----End-----