Reg. No.

V SEMESTER B.TECH (ELECTRICAL & ELECTRONICS ENGINEERING)

MAKEUP EXAMINATIONS, MAY 2018

SUBJECT: DIGITAL SIGNAL PROCESSING [ELE 3102]

	REVISED CREDIT SYSTEM	
Tim	: 3 Hours Date: 07 May 2018 Max. Marks: 5	0
Instr	 Answer ALL the questions. Missing data may be suitably assumed. DSP-Quick Reference Table may be supplied. 	
1A.	An analog input signal is composed of a weighted sum of three sinusoidal signals of different frequencies is given by $x_a(t) = 2\cos 120\pi t + 5\sin 180\pi t + 2\cos 350\pi t$ If the sampling rate is 200 Hz. (i) Find the Nyquist rate for this signal. (ii) Determine the discrete time signal $x[n]$ obtained after sampling (iii). Illustrate aliasing if any (0)	5)
1B.	For the given real sequence $x[n] = \delta[n+2] + 2\delta[n] - \delta[n-3]$ Find 6 - point DFT of $x[n]$ making use of Twiddle factor. (0)	<i>"</i> 5)
2A.	Given the two 4-point DT sequences $x[n]$ and $h[n]$ as below $x[n] = \{1, 1, 0, 2\}; 0 \le n \le 3$; $h[n] = \{1, 0, 2, 1\}; 0 \le n \le 3$ Determine 4-point circular convolution of $x[n]$ and $h[n]$	5)
2B.	Determine the output $y[n]$ of a filter using Overlap save method whose impulse response is $h[n] = \delta[n] - \delta[n-1] + 2\delta[n-2]$ and input sequence $x[n] = \{1, -1, 2, -2, 3, -3, 4, -4, 1, 3, 2, 1\}$. Take sub-frame length of 4. (0)	<i>י</i> י 5)
3A.	Find the 8-point DFT using radix–2 DIT FFT algorithm and show all intermediate values on butterfly diagram for a time domain sequence $x[n] = \{1, 2, -2, 1, 0, 0, 3, -2\}$ (09)	5)
3B. 4A.	Draw the direct form I, direct form II structures for digital IIR filter described by the system function $H(z) = \frac{5 - 4z^{-1} + 7z^{-2} - 2z^{-3}}{1 - \frac{3}{2}z^{-1} + \frac{4}{5}z^{-2} - \frac{1}{8}z^{-3}}$ (09)	5)
	1 0 2	

4B. Design a linear phase FIR low-pass filter using Hamming window by taking 7 samples of the window sequence with desired frequency response:

$$\left| H_d \left(e^{jw} \right) \right| = \begin{cases} 1 & ; |\omega| \le \frac{3\pi}{4} \\ 0 & ; otherwise \end{cases}$$
(05)

5A. Design an ideal low-pass FIR digital filter using frequency sampling method to satisfy the following conditions.

Length of filter: 7

Sampling frequency: 16 kHz

Pass-band:
$$0 \le F \le 4 kHz$$
 (05)

5B. Design a digital low-pass Butterworth filter using Bilinear transformation to meet the following specifications:

$$0.8 \le \left| H\left(e^{j\omega}\right) \right| \le 1; \quad 0 \le \omega \le 0.2\pi$$

$$\left| H\left(e^{jw}\right) \right| \le 0.2; \quad 0.6\pi \le \omega \le \pi$$
(05)