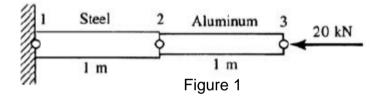


MANIPAL (A constituent unit of MAHE, Manipal)

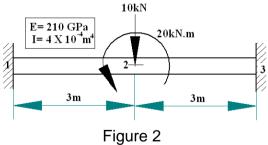
VI SEMESTER B.TECH. (AERONAUTICAL ENGINEERING)

END SEMESTER EXAMINATIONS, JUNE 2018

SUBJECT: FINITE ELEMENT METHOD [AAE 3202]


REVISED CREDIT SYSTEM (18/06/2018)

Time: 3 Hours


MAX. MARKS: 50

Instructions to Candidates:

- ✤ Answer ALL the questions.
- ✤ Missing data may be suitable assumed.
- **1A.** For the truss assemblages shown in Figure 1, determine the nodal **(05)** displacements, Use the direct stiffness method Given Data: $E_{st} = 200GPa$, $E_{al} = 70GPa$, $A_{st} = 4x10^{-4} m^2$, $A_{al} = 2x10^{-4} m^2$.

1B. For the beam shown in Figure 2, determine the displacements and the slopes **(05)** at the nodes.

2A. For the beams shown in Figure 3, determine the displacements and the slopes at the nodes. $E = 29 \times 10^6$ psi and I = 200 in⁴ (05)

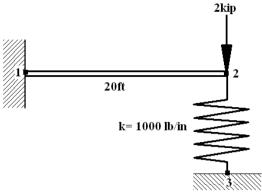
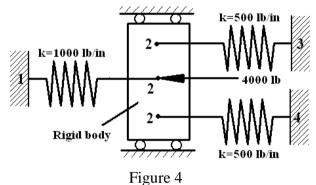



Figure 3

2B. Use the principle of minimum potential energy to solve the spring problems **(05)** shown in Figure 4. Find the nodal displacement.

3. For the plane stress supported by the spring at node 1 shown in figure 5, **(10)** determine the nodal displacements and stresses in each elements. Let E = 210 GPa and $A = 5X10^{-4}$ m² for both the truss elements.

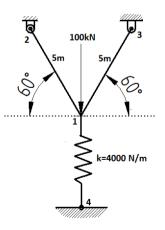


Figure 5

4. For the beam shown in Figure 6, subjected to the concentrated load P and **(10)** the linearly varying line load w, determine the free-end deflection and rotation and the reactions. Use the equivalent load replacement method. Let EI be constant throughout the beam.

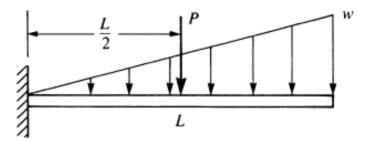


Figure 6

Force equivalent diagram	f1y	m1	f2y	m2
$L/2 \qquad P \\ L/2 \qquad L/2 \qquad E$	$\frac{-P}{2}$	$\frac{-PL}{8}$	$\frac{-P}{2}$	<u>PL</u> 8
	$\frac{-7wL}{20}$	$\frac{-wL^2}{20}$	$\frac{-3wL}{30}$	$\frac{wL^2}{30}$

5. For the plane strain elements shown in Figure 7, the nodal displacements (10) are given as

 $u_1 = 0.001 \text{ in: } v_1 = 0.005 \text{ in: } u_2 = 0.001 \text{ in: } \\ v_2 = 0.0025 \text{ in: } u_3 = 0.0 \text{ in: } v_3 = 0.0 \text{ in: }$

Determine the element stresses $\sigma_{x'} \sigma_{y'} \tau_{xy'} \sigma_{1'}$ and σ_{2} and the principal angle θ_{p} . Let E = 30X10⁶ psi and θ = 0.25, and use unit thickness for plane strain. All coordinates are in inches.

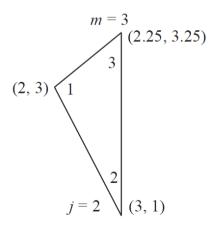


Figure 7