Reg. No.

Г

MANIPAL INSTITUTE OF TECHNOLOGY

A Constituent Institution of Manipal University VI SEMESTER B.TECH (BIOTECHNOLOGY) END SEMESTER EXAMINATIONS, APR/MAY 2018 SUBJECT: BIOPROCESS EQUIPMENT DESIGN [BIO 3202] REVISED CREDIT SYSTEM (20/04/2018)

Time: 3 Hours

MAX. MARKS: 50

	Instructions to Candidates:	
	 Answer ALL the questions. 	
	 Missing data may be suitable assumed. 	
14	Write a note on various types of closures used in process vessels. Highlight the pressure limits:	5
1]	You have been given responsibility to design an evaporator (1.2 m diameter & 46 m height) to concentrate a fruit pulp. The pressure inside the evaporator is full vacuum. The design temperature is 450°C and the allowable yield stress of the material used at this temperature is 1.84 kN/m ² . Use fully radiographed weldings. Your boss proposes that the wall thickness of this evaporator be 12mm. Check whether this thickness is sufficient or not?	5
2.	You have been given responsibility to culture high cell density of <i>Catharanthus roseus</i> which produces ajmalicine, an alkaloid used in the treatment of hypertension. Which one of the following reactor type do you choose: Stirred tank reactor or air-lift reactor? Compare and discuss:	5
2	Assuming dynamic similarity, can you determine the power consumption and impeller speed of a 1000 L fermenter, based on the findings of the optimum conditions from a geometrically similar 1 L vessel? If not, can you scale-up by using a different fluid system?	5
3.	 Your responsibility is to design a sterile feed chemostat (18,000 L) that has to be operated at 80% of washout dilution rate. The kinetic and other parameters are given below and it can be assumed that cells follow Monod kinetics. S_o = 50g/L; μ_m = 0.28 h⁻¹; K_s = 1.8 g/L; Y_{XS} = 0.36; Y_{O2X} = 0.65; C_{crit} = 0.7 mg/L; C_{AL}*(mg/L) = 468 / (31.6 + T°C); T = 36°C; μ=25cp, ρ=1010kg/m³, You can choose the following design parameters: N=215 RPM, D_T = 2.5m, D_i = 1 m, v_g=120 m/h; Flooding: Q_g < 0.6 (D_i⁵N²/D_T^{1.5}); Gas hold-up φ = 1.8 P_m^{0.14}v_g^{0.75}; N_P = 6+1/Re_i; P_g/P = 2.99x10³ N_A⁴ - 1x10³ N_A³ + 1.25x10² N_A² - 10.2N_A+1.012; k_La = (0.0333/D_T⁴)(P_g/V)^{0.541}Q_g ^(0.541/\D_T) a. Design the chemostat based on k_La method, accounting for hold up and head space. b. Will a jacket provide sufficient heat transfer area to keep the system isothermal at 35°C? It can be assumed that cooling fluid is available at 10 °C and is not to exceed 25°C and average overall heat transfer coefficient of 680 W/m²K applies in this case. 	10

Your responsibility is to cool an organic solvent from 368 K to 313 K at a rate of 27.8 kg/s using a coolant available at 298 K and leaving at 313 K. You can choose 1 - 2 STHE. Determine the available overall heat transfer coefficient and check whether the design criteria are satisfied or not? Use the following information: Correction factor $F_T=0.836$, ³/₄ inch on 1inch triangular pitch 16 BWG (OD=20 mm, ID=16 mm) with length 4.88m. Shell diameter = 889 mm. $r_H = \{[(0.43P_T^2)-(\pi d^2_0/8)]/[\pi d_0/2]\}$

	D	Carlat		1		
	Property 2	Coolant	8	-		
4 A	Density (kg/m ³)	995	750		10	
4A	Viscosity (kg/m-sec)	0.8x10 ⁻³	0.34x10 ⁻³		Ĩ	
	Heat capacity (kJ/kg K)	4.2	2.84			
	Thermal conductivity (W/m K	.) 0.59	0.19			
	Overall heat transfer coefficient (W/m ² K)	600	1			
	Dirt factor (W/m ² K)	5000 (Organic solvent)				
		3000 (Cool	ant)			
	Individual Heat transfer coefficients		$Re^{0.55}Pr^{0.33}$ (Shell si			
		Nu = 0.027	Re ^{0.8} Pr ^{0.33} (Tube side	de)		
	A triple effect evaporator is concentrating a liquid that has no appreciable elevation in boiling point. The temperature of the steam to the first effect is 381 K, the boiling point of the solution in the last effect is 325 K. The overall heat transfer coefficients, in W/m ² °C, are 2500 in the first effect, 2000 in the second and 1000 in the third effect. At what temperatures will the liquid boil in the first and second effects?					
5A	in boiling point. The temperature of the boiling point of the solution in the last coefficients, in W/m ² °C, are 2500 in the f the third effect. At what temperatures w	e steam to t effect is 325 irst effect, 20	he first effect is 3 K. The overall he 000 in the second ar	81 K, the at transfer nd 1000 in	5	
5A 5B	in boiling point. The temperature of the boiling point of the solution in the last of coefficients, in W/m ² °C, are 2500 in the f the third effect. At what temperatures we effects? A sugar solution has to be concentrat evaporator. The feed solution enters the temperature of 300K. Steam is available pressure in the vapor space of the evap saturation temperature of steam is 320 K 5000 W/m ² K. Calculate the steam econo Saturated steam (2.3 bar; 380 K)	e steam to t effect is 325 irst effect, 20 ill the liquid ed from 5% evaporator a e at a saturat orator is 0.1 . If the overa my and heat Enthalpy (kJ/kg)	he first effect is 3 K. The overall header overall header overall header overall header overall header overall header over a single over the header over thead	81 K, the at transfer and 1000 in and second egle effect h and at a bar. The esponding efficient is	5	
	in boiling point. The temperature of the boiling point of the solution in the last of coefficients, in W/m ^{2o} C, are 2500 in the f the third effect. At what temperatures we effects? A sugar solution has to be concentrat evaporator. The feed solution enters the temperature of 300K. Steam is available pressure in the vapor space of the evap saturation temperature of steam is 320 K 5000 W/m ² K. Calculate the steam econo Saturated steam (2.3 bar; 380 K) Saturated steam (0.18 bar; 320 K)	e steam to t effect is 325 irst effect, 20 ill the liquid ed from 5% evaporator a e at a saturat orator is 0.1 . If the overa my and heat Enthalpy (kJ/kg)	he first effect is 3 K. The overall her 200 in the second an 1 boil in the first an o to 20% in a sin it a rate of 36 tons/ tion pressure of 2.3 8 bar and the corre all heat transfer coe transfer area: Heat of vapori (kJ/Kg)	81 K, the at transfer and 1000 in and second egle effect h and at a bar. The esponding efficient is		