Reg. No.			
ricg. 140.			

VI SEMESTER B.TECH. (BIOTECHNOLOGY / CHEMICAL ENGINEERING)

END SEMESTER EXAMINATIONS, APR 2018

SUBJECT: MICROBIAL TREATMENT OF WASTEWATER [BIO 4003]

REVISED CREDIT SYSTEM

Time: 3 Hours

MAX. MARKS: 50

5

2

4

2

4

Instructions to Candidates:

- Answer ALL the questions.
- Missing data may be suitable assumed.
- **1A.** Determine the mole fraction of oxygen in water if the concentration of dissolved oxygen is 10.0 mg/L

1B. Determine the activity coefficients for the mono and divalent ions in the wastewater for the data given below. Using the value of the activity coefficient for a divalent ion, estimate the equilibrium concentration of calcium in solution needed to satisfy the solubility product for calcium carbonate (CaCO₃) at 25°C. The value of the solubility product constant K_{sp} at 25°C is 5 X 10⁻⁹.

Concentration(pp Cation Anion Concentration(ppm) m) Ca2+ 82.2 HCO₃-220.0 Mq2+ 17.9 SO42-98.3 Na⁺ 46.4 CI-78.0 K+ 15.5 NO₃-25.6

- **1C.** What are the adverse effects on the receiving water body when these pollutants are discharged in water along with effluents?
- **2A.** Illustrate the interrelationships of solids found in water and wastewater.
- **2B.** Determine the 1-day BOD and ultimate first-stage BOD for a wastewater whose 5-day 20°C BOD is 200 mg/L. The reaction constant k (base e) =0.23d-1. What would have been the 5-day BOD if the test had been conducted at 25°C?
- **2C.** Determine the ThOD for glycine (CH₂(NH₂)COOH) using the following assumptions, 1. the organic carbon and nitrogen are converted to CO₂ and NH₃, 2. NH3 is oxidized to nitrite and nitrate.
- 3A. Determine theoretically the following for protein (C₅H₇O₂N) using Buswell equation

a) the gas composition (% carbon dioxide and % methane) when digesting protein

3

3

6

4

6

4

- b) the volume of methane produced from 1 kg of protein(NTP)
- 3B. Explain the MPN analysis for the quantification of total coliform bacteria.

3C. The results of a coliform analysis using the multiple-tube fermentation test for the effluent from an intermitted sand filter are as given below. Using these data, determine the coliform density (MPN/100mL) using Thomas equation.

Size of portion, mL	1.0	0.1	0.01	0.001
Number of positive	4	3	2	0
Number of negative	1	2	3	5

- 4A. Determine the rise in temperature for the aerobic stabilization of raw sewage sludge, if the initial dry matter content is around 36 g/L (average organic dry matter content of sewage sludge) and the biodegradability of 50% within the residence time in the sludge reactor.
- 4B. Illustrate the steps involved in anaerobic degradation of cellulose
- 5A. Discuss in detail about the design considerations for Upflow anaerobic sludge blanket (UASB) process involving volumetric organic loading, upflow velocity, reactor volume, physical features and gas collection system.
- 5B. Explain the combined nitrification and denitrification process