Reg. No.

(A constituent unit of MAHE, Manipal)

VI SEMESTER B.TECH. END SEMESTER EXAMINATIONS APR 2018

SUBJECT: CHEMICAL REACTION ENGINEERING 2 [CHE 3202]

REVISED CREDIT SYSTEM (20/04/2018)

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates:

✤ Answer ALL the questions.

✤ Missing data may be suitable assumed.

	A reactor is used to carry out the reaction $A \rightarrow R$, $-r_A = 0.05C_A$, mol/(1.min).												
1A.	С	35	38	40	40	39	37	36	35		07		
	t, min	0	10	20	30	40	50	60	70		07		
	Calculate conversion assuming a). Plug flow b). Mixed flow and c). The Tank in series												
	model.												
1B.	Obtain paramet	an eq ers.	uation	n for	conver	sion b	y usin	g Byp	assing	g and Dead space as the two	03		
2A.	A reversible elementary reaction $A \leftrightarrow B$ is carried out in a CSTR with pure A entering the reactor												
	a) I	Derive	an e	xpress	sion (or	set of	f expre	essions	s) to ca	alculate G(T) as a function of	f		
	I	Heat o	of read	ction,	equilib	rium c	onstan	it, tem	peratur	re, and so on. Show a sample			
	0	alcula	ation f	for G(4	400 K).						07		
	b) V	What a	are the	e Stead	ly state	tempe	ratures	and w	hich o	of them are locally stable?	07		
	c) What is the conversion to the upper steady state?												
	Data : UA = 3600 cal/min.K; $C_{PA} = C_{PB} = 40$ cal/mol.K; $E/R = 20,000$ K;												
	$\Delta H_{RX} = -80000 \text{ cal/mol A}; K_{eq} = 100 \text{ at } 400 \text{ K}; k = 1 \text{ min}^{-1} \text{ at } 400 \text{ K}; V = 10 \text{ dm}^{-3};$												
	$v_0 = 1 \text{ dm}^3/\text{min}; F_{AO} = 10 \text{ mol/dm}^3; T_a = T_o = 37 \text{ °C}.$												
2B.	Write a	short 1	note o	n mult	tiple ste	eady sta	ates.				03		
	With a	neat	sketcl	n deriv	ve the	relatio	on bety	ween t	ime a	nd conversion for small non	05		
3A.	shrinkin	g parti	icle w	hen ch	nemical	reacti	on is tł	ne rate	contro	olling step.	05		
	For a certain fluid-particle reaction, represented by $A(g) + bB(s) \rightarrow products$, it is												
	propose	d to ch	nange	some	of the	operati	ng par	ametei	s as fo	ollows: the particle size R_1 is to)		
3B.	be triple	d to F	\mathbf{X}_2 and	$\frac{1}{1}$ the to	empera	ture is	to be	increa	sed fro	$T_1 = 800 \text{ K to } T_2 = 900 \text{ K}$. 05		
	what would the partial pressure (P_{Ag2}) be, if the original partial pressure (P_{Ag1}) was 2 bar,												
	notice that the fractional conversion (A_A) be unchanged for a given reaction time? The particles are spherical and reaction rate is controlling for the shrinking-core model. For												
	Darncies	the reaction, $E_A/R = 12.000$ K.											
3A. 3B.	shrinkin For a c proposed be triple What we in order	g parti ertain d to ch ed to F ould th that th	icle w fluid nange R_2 and he par he fr	hen ch -partic some the to tial pr action	nemical cle read of the empera essure al conv	reactive ction, operative ture is (P _{Ag2}) rersion	on is the represent ng par to be be, if the (X _A) be	ented ented ameter increa he origo oe unch	contro by A(§ rs as fo sed fro final pa hanged	billing step. (g) + bB(s) \rightarrow products, it is collows: the particle size R ₁ is to com T ₁ = 800 K to T ₂ = 900 K artial pressure (P _{Ag1}) was 2 bar 1 for a given reaction time? The	, 05		

4A.	Explain in detail the kinetics involved in Slurry reactors.	07						
4B.	Mention the important assumptions that were employed in Langmuir's adsorption isotherm.	03						
5A.	Find an interim rate expression for the following catalytic reaction when adsorption is the rate controlling step (single site mechanism with inhibition). $A \rightarrow B$.							
5B.	Write a note on the classification of catalyst poisons.							