Reg. No.					

VI SEMESTER B.Tech. (CHEMICAL ENGINEERING) END SEMESTER EXAMINATIONS, APRIL 2018

SUBJECT: O.E.: INDUSTRIAL POLLUTION CONTROL (CHE 3282)

REVISED CREDIT SYSTEM

Time: 3 Hours MAX. MARKS: 50

Instructions to Candidates: Answer ALL the questions.

1 A	Draw a neat self-explanatory diagram of the Hydrologic cycle.			
1 B	What is the significance of the following: i) Volatile solids ii) Turbidity iii)Temperature iv)Alkalinity v) Acidity vi)BOD	3		
1 C	Explain the principle of any 2 methods (each) to collect gaseous sample and particulate sample from air.	4		
2 A	Explain any 2 technologies used in tertiary treatment of wastewater.			
2 B	Differentiate between Anaerobic and Aerobic treatment of wastewater.(Any 2)			
2C	Draw a neat flowchart with schematic diagrams of each treatment process in primary treatment of wastewater.			
3 A	Describe the three approaches for capture of CO ₂ involved in Carbon sequestration.	3		
3 B	Explain any 2 technologies used to control particulate matter emission.	4		
3 C	The maximum CO concentrations normally measured in downtown Salt Lake City are about 3000 µg/m³. These values occur during strong inversions during which wind speed was 0.5 m/s and mixing height was 95 m. The background concentration for this situation is estimated to be 450µg/m³. The downtown area of Salt Lake City may be approximated as 4 km by 4 km square. Estimate the emission density (g/s. m²) for CO for downtown Salt Lake City.			
4	Explain the different steps involved in sludge treatment (in not more than two or three sentences per process).	10		
5 A	How is e-waste managed by the following methods? i) Production process modification ii) Sustainable product design	4		
5 B	Describe methods adopted to control noise pollution in industry.	6		

****** END ******

CHE 3282 Page 1 of 1