MANIPAL INSTITUTE OF TECHNOLOGY

(A constituent unit of MAHE, Manipal)

VI SEMESTER B.TECH. (CHEMICAL ENGINEERING) MAKE UP EXAMINATIONS, JUNE 2018

SUBJECT: PROCESS DYNAMICS AND CONTROL [CHE3203]

REVISED CREDIT SYSTEM

Time: 3 Hours

MANIPAL

MAX. MARKS: 50

Instructions to Candidates:
Answer ALL questions.
Use of linear graph sheet is permitted.
Missing data may be suitably assumed.

1A	Explain the different variables used to describe the process to design a feedback control scheme.	02
1B	Define the Initial value and Final value theorems and discuss their importance in control system.	04
1C	Consider the Laplace transform of the function x(t) as, $\overline{x}(s) = \frac{s^2 - s - 6}{(s-1)(s+1)(s-2)}$ Find its x(t) using inverse Laplace transform.	04
2A	A thermometer assumed to first order dynamics with a time constant of 1 min is placed in a temperature bath at $100 {}^{0}$ C. After the thermometer reaches steady state, it is suddenly placed in a bath at $110 {}^{0}$ C at t = 0 and left there for 1 min, after which it is immediately returned to the bath at $100 {}^{0}$ C. Calculate the thermometer reading at t = 0.5 min and at t = 2.0 min.	06
2B	Explain the characteristics of time delay system. Specify the transfer function model of time delay system and approximate with Pade's first order approximation	04
3A	Define the bounded and unbounded inputs. State their time-domain and S-domain forms	04
38	Consider the storage tanks conneted in non-interacting way as shown below. Develop a transfer function model relating between liquid level (h ₂) in the Tank-2 and the inlet flow rate (q ₁). Assume that the density of the fluid remain constant and flow-head relationship consider to be linear. Q_1 Q_1 Q_1 Q_1 Q_2 Q_2 Q_3 Q_4 Q_2 Q_3 Q_4 Q_2 Q_3 Q_4 $Q_$	06

4 A	Obtain the closed loop transfer function for servo and disturbance rejection problems and comment on the stability of the two problems.	04
4 B	It is decided to design a P-controller for process which behaves as first order dynamics. The final	03
	control element and measuring elements follow unity gain responses. Prove that offset does exist for	
	this control scheme.	
4 C	Determine the range of controller gain for the control system shown below using Routh-Hurwitz	03
	method.	
	R(s) + Kc I $C(S)$	
	·	
5A	A proportional derivative controller is used to control two first order system connected in series as	04
	shown below. Construct the root locus diagram for the control system and find the range of K_C for which the control system is stable	
	R(s) + c 0.5 1 $C(s)$	
	Kc(4s+1) $(s+1)$ $(s+1)$ $(s+1)$	
		0.5
5B	a. Explain the Bode's stability criteria b. Discuss the gain margin and phase margin	03
5 C	Discuss the working principle of different adaptive control schemes	03
	Discuss the working principle of uniforent adaptive control schemes.	

CHE3203