Reg. No.										
----------	--	--	--	--	--	--	--	--	--	--

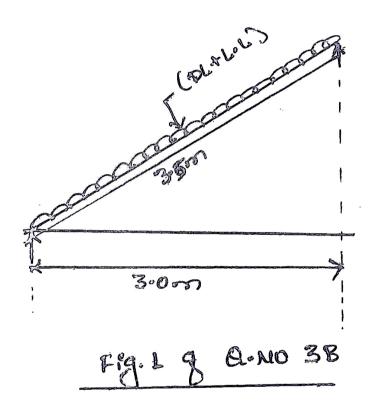
VI SEMESTER B.TECH. (CIVIL ENGINEERING) END SEMESTER EXAMINATIONS, APRIL/MAY 2018

SUBJECT: ADVANCE DESIGN OF STEEL STRUCTURES (CIE 4013) REVISED CREDIT SYSTEM (26/ 04/ 2018)

Time: 3 Hours MAX. MARKS: 50

Instructions to Candidates:

- ❖ Answer ALL the questions.
- Missing data may be suitable assumed.
- ❖ Usage of IS:800 -2007 and SP-6is permitted.


Q.No		Marks	co
1.	Design a simply supported welded plate girder using intermediate stiffener of span 18m and laterally restrained throughout. It has to support a uniform service load 50kN/m throughout the span exclusive of self-weight. Use Fe 4410 and yield stress of steel is 250MPa. Design cross section dimensions, check for end panel and design intermediate stiffener.	10	CO1
2.	Design a gantry girder to be used in an industrial building carrying a manually Operated overhead travelling crane, for the following data: Crane capacity 200kN , self-weight of the crane girder excluding trolley 160 kN , self-weight of trolley 40kN , Approximate minimum approach of the crane hook to the gantry girder 1.0m . wheel base 3.0m , c/c distance between gantry rails 14m , c/c distance between columns 8m , self-weight of rail section 300N/m, diameter of the crane wheels 100mm , steel grade Fe 410 , self-weight of girder 2kN/m . Check for combined local capacity (γ_{mo} =1.1, γ_{mw} =1.5, γ_{ml} =1.5).	10	CO2
3A.	Check the fatigue strength for gantry girder designed, for the following data: The crane operates for 240 days per year, the working hours 9am to 5 pm , maximum number of trips per hour 4 , design life 50 years (Intermittent weld is used for I and Channel section). The max moment 400kN-m , max shear force 250 kN . Use section ISMB 600@ 122.6 kg/m and ISMC 300@35.8 kg/m γ_{mft} =1.15.	05	CO3
<i>3B</i> .	Design laterally unsupported simply supported beam for the given loads, Live load 1.81kN/m and Dead load 1.2kN/m steel grade Fe 410 refer Fig.1, Fy= 250N/mm ² .	05	CO3
4.	Design a Biaxial industrial column of unsupported length 4.5m height subjected to following loads and moments: Factored axial load 700kN , Factored moment Mz @ top 20kN-m , Factored moment Mz @bottom 40kN-m , Factored moment My @ top 5 kN-m , Factored moment My @ bottom 10 kN-m . Assume effective length of column as 0.8L , use Fe410 steel grade (Fy = 250 N/mm²).	10	CO4

CIE 4013 Page 1 of 2

Reg. No.	
----------	--

5A.	Explain briefly about axially loaded compression members of Light gauge steel members.	05	CO5
5B.	Write short note on prefabricated building (steel) structures.	05	CO5

35m, 3-0m

CIE 4013 Page 2 of 2