Reg. No.					
----------	--	--	--	--	--

MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL

(A constituent institution of MAHE, Manipal)

VI SEMESTER B.TECH. (CIVIL ENGINEERING)

END SEMESTER EXAMINATIONS, APRIL/MAY 2018

SUBJECT: ADVANCED REINFORCED CONCRETE DESIGN [CIE 4014) REVISED CREDIT SYSTEM (24/ 04/ 2018)

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates:

- ✤ Answer ALL the questions.
- ✤ Missing data may be suitable assumed.
- ♦ Use of IS:456-2000 and 15:3370-2009 are permitted

Q.No	Questions	Marks	CO
1.	Details of interior panel of a flat slab supported on circular columns are given below Size of the panel = 5.8m X 4.8m Width of drop (square in plan) and column strips = 2.4m Thickness of slab = 200mm (inclusive of 25mm effective cover) Thickness of drop = 80mm		2
	Total factored load on the panel = 25 kN/m ²		
	Absolute sum of positive and average negative factored bending moments in longer and shorter spans = 500kNm and 350kNm respectively		
	Grade of concrete and steel = M30 and Fe415 respectively Check whether the slab is safe for punching shear around drop and calculate reinforcement for middle strips by direct design method.		
2.	Details of cantilever type retaining wall are given below. Top and bottom widths of the stem (inclined face towards the material retained) = 175mm and 400mm respectively Density and angle of repose of soil = 18 kN/m ³ and 32° respectively. Difference in soil level on either face of the wall = 5m Depth of foundation = 1.2 m Thickness of base slab can be assumed equal to the bottom width of stem Width of base and heel slabs = 3.3 m and 1.8 m respectively Co-efficient of friction between foundation soil and concrete = 0.35 SBC of foundation soil = 230 kN/m ² Check if the resultant force falls in the middle one-third of the base. Calculate reinforcement required for stem and check for possible shear using M25 concrete and Fe415 steel. Assume effective cover as 50mm.	10	3

MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL

	NSPIRED BY LIFE (A constituent institutio	n of MAHE, Man	ipal)			
3.	Check the grid floor for r along longer span. Adopt p Number of grid beams (exc 6 and 8 respectively Spacing of grid beams = 1. Total expected service load Size of grid beams in both of slab of thickness 100mm Moment of inertia of grid b Grade and poisson's ratio o	maximum de date theory. cluding perip 8m c/c d on floor = 8 directions = n) peams = 1.47 <u>f concrete us</u> <u>D/B</u> <u>1.5</u> 2.0 2.5 3.0	eflection and c sheral beams) is $3kN/m^2$ 250mm X 700 $X1010 mm^4$ sed = M35 and k 0.196 0.229 0.249 0.263	omm (depth is inclusive	10	4
4.	 Analyze a 3 bay substitute frame for bending moments if the maximum sagging moment of the beam is to occur at centre of middle span. Spans of 3 continuous bays = 3m, 5m and 4m respectively Spacing of beams parallel to the frame considered = 4m c/c Length of columns = 3.6m c/c Thickness of floor slab = 125mm Live and floor finish loads = 2.5kN/m² and 0.7kN/m² respectively Size of beams and columns = 250mm X 350mm 					4
5.	Size of beams and columns = 250mm x 550mmDetails of circular water tank with rigid base are given below.Overall height of the tank = 4.5mDiameter of the tank available for storage = 14mThickness of tank wall = 200mm (inclusive of 50mm effective cover)Grade of concrete and steel = M35 and Fe415Check if the thickness provided for the wall is sufficient and calculatereinforcement for cantilever portion (assumed as per approximate analysis).					5