Reg. No.

MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL

(A constituent institution of MAHE, Manipal)

VI SEMESTER B.TECH. (CIVIL ENGINEERING) END SEMESTER EXAMINATIONS, APRIL/MAY 2018 SUBJECT: HYDRAULICS AND HYDRAULIC MACHINES [CIE 4007] REVISED CREDIT SYSTEM (24/ 04/ 2018)

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates:

✤ Answer ALL the questions.

✤ Missing data may be suitable assumed.

Q.No		Marks	СО
1A.	A wide rectangular channel carries a flow of 2.76 m ³ /sec/m width, the depth of flow being 1.524m (a) Calculate the minimum rise in the floor at a section required to produce critical flow conditions (b) What is the corresponding fall in the water level?	03	CO1
1B.	Explain the energy- momentum principle as applied to open channel flow with a neat sketch and obtain the general momentum equation	03	CO1
1C.	Water is discharged in a rectangular channel 1.2m wide by passing under a sluice so that the flow is 0.85 m/sec and the depth is 0.6m. Determine the variation of depth (dy/dx) if the slope of the channel bed is (i) 1 in 1000 (ii) 1 in 700 (iii) 1 in 500. Assume Chezy's C= 57	04	CO1
2A.	If in a hydraulic jump occurring in a horizontal rectangular channel, the Froude number before the jump is 10.0 and the energy loss is 3.0m. Estimate the sequent depths, discharge and the Froude number after the jump.	03	CO2
2B.	What is regime channel? Explain initial, final and permanent regime conditions as applied to design of stable channels.	02	CO3
2C.	State the assumptions (any 4 points) made in the derivation of the dynamic equation for gradually varied flow. In the form of a table give neat sketches of GVF profiles of mild and steep sloped channels.	05	CO1
3A.	Explain the following characteristics of jump in a rectangular channela) Pressure distributionb) Velocity profile	04	CO2
3B.	Elaborate the step by step working proportions of Pelton wheel.	03	CO4
3C.	Design an irrigation channel by Kennedy's theory to carry a discharge of 15cumec with critical velocity ratio =1, Manning's n=0.0225and bed slope =1 in 5000.	03	CO3
4 A.	Show that, for maximum efficiency in a jet striking at the centre of moving curved vane, the vane velocity should be equal to one third of the jet velocity	02	CO4

Reg.	No.
------	-----

MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL

BY LIFT (A constituent institution of MAHE, Manipal)

4B.	A square metal plate 200mm x 200mm x 10mm is hung so that it can swing freely about the upper horizontal edge. A horizontal jet of water 20mm diameter impinges with its axis perpendicular and 50mm below the edge of the hinge and keeps it steadily inclined at 30° to the vertical. Find the velocity of the jet if the specific weight of the metal is 75.54×10^{3} N/m ³	04	CO4
4C.	A Pelton wheel develops 5000kW power under a head of 225m at an overall efficiency of 85%, when rotating at a speed of 200 rpm. Find the unit discharge, unit power and unit speed. If the head of the turbine falls to 120m during summer season; find the speed, discharge and power for this head.	04	CO4
5A.	Distinguish between centrifugal pump and reciprocating pump (6 points)	03	CO5
5B.	A centrifugal pump has an impeller 0.5m outer diameter and when running at 600rpm discharges water at the rate of 8000 Ipm against a head of 8.5m. The water enters the impeller without whirl and shock. The inner diameter is 0.25m and the vanes are set back at outlet at an angle of 45° and the area of flow is constant from inlet and outlet of the impeller and is 0.06m ² . Draw the velocity triangles at inlet and outlet. Determine (i) The manometric efficiency of the pump (ii) the vane angle at the inlet.	04	CO5
5C.	Explain the various pat1S of a centrifugal pump with the help of a neat diagram.	03	CO5