Reg. No.										
----------	--	--	--	--	--	--	--	--	--	--

VI SEMESTER B.TECH. (CIVIL ENGINEERING) END SEMESTER EXAMINATIONS, APRIL/MAY 2018

SUBJECT: PAVEMENT MATERIALS AND DESIGN [CIE 4011] REVISED CREDIT SYSTEM (24/ 04/ 2018)

Time: 3 Hours MAX. MARKS: 50

Instructions to Candidates:

- ❖ Answer ALL the questions.
- ❖ Missing data may be suitable assumed.
- ❖ IRC codes and formulae handouts are permitted

Q.No		Marks	CO
1A.	Explain the objective and functional requirements of pavement	5	1
1B.	With a neat sketch the components of flexible pavement system.	5	1
2A.	A wheel load of 5100kg act on a three layer pavement structure consisting of 150mm of bituminous layer on 250mm of crushed stone road base. The subgrade has a CBR of 10%. The radius of contact area of wheel is 16cm. Calculate the vertical and horizontal stresses and strains on both sides of each interface.	5	3
2B.	Design the flexible pavement using the following data and compute the allowable stresses and strains. (i) Design CBR value of subgrade: 5% (ii) CBR value of 500mm thick layer of compacted soil over subgrade: 8% (iii) Initial traffic at the time of completion of construction: 1500CV per day. (iv) VDF=3.5 (v) LDF=0.5	5	3
3A.	With a neat sketch explain the types of stresses developed in rigid pavement. Explain the measures to negotiate the development of stress.	5	3
3В.	Design the dowel system using the following data: (i) Thickness of the slab:32cm (ii) Design wheel load: 10,000kg (iii) Width of joint:2cm (iv) Modulus of subgrade reaction: 30kg/cm ³	5	3
4A.	Explain the types of joints in concrete pavement. Derive the formula for area of steel and length of tie bar.	5	3
4B.	Design tie bar system using the following data: (i). Thickness of slab:30cm (ii).Coefficient of friction:1.5 (iii). Unit wt. of concrete slab:2350kg/cm ³ (iv). Dia of tie:1.6cm	5	3

CIE 4011 Page 1 of 2

MANIPAL INSTITUTE OF TECHNOLOGY

(A constituent institution of MAHE, Manipal)

(A constituent institution of MATE, Manipal)									
	(v). Allowable working stress in steel: 1250kg/cm ²								
	(vi). Permissible bond stress of tie bars: 17.5kg/cm ²								
	Determine the optimum bitumen content of the mix using the following data.								
	Bitumen	Stability	Flow	V_0	VFB	G_{m}			
	content	(kg)	(units)	(%)	(%)				
5A.	3	499.4	9.0	12.5	34	2.17	5	2	
	4	717.3	9.6	7.2	65	2.21	5		
	5	812.7	12.0	3.9	84	2.26			
	6	767.3	14.8	2.4	91	2.23			
	7	662.8	19.5	1.9	93	2.18			
5B.	Explain the mud pumping phenomenon in concrete pavement						5	4	

CIE 4011 Page 2 of 2