| Reg. No. |  |  |  |
|----------|--|--|--|
|----------|--|--|--|



MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL

(A constituent institution of MAHE, Manipal)

## VI SEMESTER B.TECH. (CIVIL ENGINEERING) END SEMESTER EXAMINATIONS, APRIL/MAY 2018 SUBJECT: WASTE WATER MANAGEMENT [CIE 3202] REVISED CREDIT SYSTEM (20/ 04/ 2018)

Time: 3 Hours

MAX. MARKS: 50

## Instructions to Candidates:

✤ Answer ALL the questions.

✤ Missing data may be suitable assumed.

| Q.No |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Marks | СО  |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----|
| 1A.  | List and discuss the objectives of biological treatment of wastewater. Explain<br>the unit operation and unit process in detail                                                                                                                                                                                                                                                                                                                                                                                                                              | 5     | CO1 |
| 18.  | <ul> <li>Wastewater sample is being analyzed to determine its BOD content. The sample is diluted to perform the test: 295 mL of distilled water are added to 5 mL of sample to fill the 300 mL BOD bottle. The bottle has an initial dissolved oxygen concentration of 8.2 mg/L. After incubating 5 days, the dissolved oxygen concentration is 4.8 mg/L.</li> <li>i) What is the 5-day BOD of the wastewater?</li> <li>ii) The deoxygenation rate constant, k<sub>d</sub>, is 0.13 day<sup>-1</sup>. What is the ultimate BOD of the wastewater?</li> </ul> | 3     | CO2 |
| 1C.  | List any 4 advantages and disadvantages of trickling filters used in wastewater treatment                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2     | CO2 |
| 2A.  | Design a horizontal grit chamber for population 50000 with water consumption of 1351pcd. (Note: Consider sewage generation 80% of water supply, Maximum flow is 2.5 times the average flow, assume horizontal velocity as 20 cm/sec, Detention time as one minute, 25% additional length to accommodate inlet and outlet zones).                                                                                                                                                                                                                             | 3     | CO4 |
| 2B.  | Assuming suitable design philosophies, design a complete screen chamber to treat a maximum flow of $0.15 \text{ m}^3$ /s of domestic wastewater. Approach velocity is given as $0.75 \text{ m/s}$ . Assume dimensions of bar screen as $10 \text{mm} \times 50 \text{mm}$ with spacing of 25mm. The cleaning frequency is once in 3 days and quantity of screenings produced is $0.015 \text{m}^3/1000 \text{m}^3$ of waste water per day                                                                                                                    | 5     | CO4 |
| 2C.  | With a diagram briefly explain the Waste Stabilization Pond (WSP) used in wastewater treatment.                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2     | CO3 |
| 3A.  | Explain i) Weir Loading ii) Compression settling iii) Detention period in settling tanks                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3     | CO3 |
| 3B.  | With a neat sketch explain the working and parts of vertical flow sedimentation tank.                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3     | CO3 |

| 3C.        | Determine the size of first and second stage trickling filter of a two stage trickling filter treating a sewage flow of 4MLD at a recirculation ratio of 1.2. The BOD of the incoming sewage to the first stage filter is 300mg/1 and BOD of final effluent from secondary filter is 30 mg/l. Efficiency of first stage filter is 76%. Also determine the hydraulic loading and organic loading on the first stage filter. Assume depth of trickling filters as 2m. |                                                                                                                         |                                                                                                                          |                                                        |          | 4 | CO4 |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|----------|---|-----|
| 4A.        | Design the activate sl<br>Population serve<br>Average sewage<br>BOD of raw sew<br>Raw sewage susp<br>BOD removal in<br>Overall BOD red<br>F/M ratio<br>MLSS in aeration<br>Air requirement<br>Also check for hydr<br>calculate return sludg                                                                                                                                                                                                                         | udge units for<br>d<br>flow<br>age<br>pended solids<br>primary clarifie<br>luction desired<br>n tank<br>raulic retentic | the following<br>50000<br>180lpcd<br>200 mg/l<br>300 mg/ l<br>35%<br>80%<br>0.2<br>3000 mg/ l<br>120 m <sup>3</sup> /day | data<br>per kg of BOD remove<br>volumetric loading     |          | 4 | CO4 |
| <b>4B.</b> | Mention any 3 merits and demerits of Septic tank.                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                         |                                                                                                                          |                                                        |          | 3 | CO3 |
| 4C.        | With a neat sketch differentiate between step aeration and tapered aeration in activated sludge process.                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                         |                                                                                                                          |                                                        |          | 3 | CO3 |
| 5A.        | With the flow diagram explain the sludge treatment process.                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                         |                                                                                                                          |                                                        |          | 4 | CO3 |
| 5B.        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                         |                                                                                                                          |                                                        |          | 3 | CO4 |
| 5C.        | A wastewater treatmed<br>A. Characteristics of<br>follows<br>Item<br>Flow<br>Dissolved oxygen<br>Temperature<br>BOD <sub>5</sub> at 20°C<br>Determine the follow<br>A. Take deoxygena<br>0.3/day and saturation<br>i. Combined dis<br>ii. BOD<br>iii. DO<br>iv. Temperature<br>v. DO at the end                                                                                                                                                                     | $Units$ $I$ $m^3/s$ $0$ $mg/I$ $2$ $^{\circ}c$ $2$ $mg/I$ $2$ $ing$ after mixition constant $n$ DO as 9.10 rcharge      | e upstream of<br>Effluent<br>0.2<br>2.0<br>26<br>40<br>ang of effluent<br>as 0.1/day<br>ng/1.                            | point A and effluerStream0.58.0223with the river water | at point |   | CO4 |