Reg. No.

MANIPAL INSTITUTE OF TECHNOLOGY

(A constituent unit of MAHE, Manipal)

VI SEMESTER B.TECH (ELECTRICAL & ELECTRONICS ENGINEERING)

MAKE UP EXAMINATIONS, JUNE 2018

SUBJECT: CONTROL SYSTEM DESIGN [ELE 4013]

REVISED CREDIT SYSTEM

Time	e: 3 Hours E	Date: 22 nd June 2018	Max. Marks: 50
Instr	 Answer ALL the questions. Missing data may be suitably a Use of MATLAB is permitted. 	issumed.	
14.	Given the uncompensated unity with a closed loop response that a. Evaluate the steady state b. Design a lag compensator c. Evaluate the steady state d. Realize the lag compensa	w feedback system with $G(s) = \frac{K}{s(s+7)}$, is thas 15% overshoot. error for unit ramp input r to improve the steady state error by a fac error of the compensated system. tor using passive circuit.	operating tor of 20. (05)
1B.	Consider the unity feedback sys methods to design a lead compe Clearly write the design procedu	tem with $(s) = \frac{\kappa}{s(s+50)(s+120)}$, use frequent nsator to yield Kv=40, with phase margin of the design of lead compensator.	cy domain of 48º. (05)
2A.	A system is described by the t models in i) controllable canon canonical form. Draw the stat controllability and observability	transfer function(s) = $\frac{5s^2+14s+8}{s^3+9s^2+23s+15}$, develocitation (s) = $\frac{5s^2+14s+8}{s^3+9s^2+23s+15}$, develocitation (s) observable canonical form ii the diagram for diagonal form and hence s of the system.	op a state i) diagonal assess the (08)
2B.	Explain the concept of Model refe equations.	erence control with a neat block diagram ar	nd relevant (02)
3A.	Design a linear state feedback of j3 and s = -5 $\dot{x} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -15 & -23 & -9 \end{bmatrix} x + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u$ Also design an observer which is Draw the state diagram of system	controller that places the system poles at $y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} x$ is 5 times faster than the control loop. in with controller and observer.	: s = −1 ± (06)
ELE 40	13		Page 1 of 2

3B. State and explain jump resonance and limit cycle of nonlinear systems

4A. Determine the stability of the equilibrium point of the following system

$$\dot{x_1} = x_2$$
 ;
 $\dot{x_2} = -2x_1 - 2x_1^3 - 3x_2$

Choose the Lyapunov function
$$V(x)_{=} x_{1}^{4} + 2x_{1}^{2} + x_{2}^{2}$$
 (04)

- **4B.** State and explain i) boundedness and ii) asymptotically stable with respect to Lyapunov stability. *(02)*
- **4C.** For the unity feedback system with $G(s) = \frac{4}{s^3 + 6s^2 + 8s + 4}$, design A PID controller using Zeigler Nichols method so that the closed loop system has maximum overshoot between 15% to 10%, and settling time less than 3 sec. Find the range of

$$K_{P}, K_{I} \& K_{D}$$
(04)

5A. Using the describing function analysis, predict the existence of the limit cycle for the system with saturation non-linearity and linear plant with transfer function $G(s) = \frac{16}{16}$

$$G(s) = \frac{1}{s(s+2)^2}.$$

The describing function for the non-linear element is $G_N = \frac{k}{\pi} [2\beta + \sin 2\beta]$ for $M \ge 2$, $G_N = k$ for M < 2, with input $m(t) = M \sin \omega t$

, ${\bf k}$ =5 is the slope. Draw the input- output waveform.

Also determine the amplitude and frequency of the limit cycle. Assess the stability of the limit cycle. (

- 5B. What is meant by completely state Controllable?
- **5C.** A continuous time system described by $\dot{x} = Ax + Bu$, where $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 2 & 2 \end{bmatrix} \&$

$$B = \begin{bmatrix} 0\\0\\1 \end{bmatrix}, \text{ performance index } J = \int_{0}^{\infty} (x^{T}Qx + u^{T}Ru)dt, R = 0.01, Q = \begin{bmatrix} 100 & 0 & 0\\0 & 1 & 0\\0 & 0 & 1 \end{bmatrix},$$

solve for i) the positive definite solution matrix 'P' of the Riccati equation ii) the optimal feedback gain matrix 'K' and iii) the eign values of A-BK (03)

(04)