Reg. No.

VI SEMESTER B.TECH (ELECTRICAL & ELECTRONICS ENGINEERING)

MAKE-UP EXAMINATIONS, JUNE 2018

SUBJECT: POWER ELECTRONICS [ELE 3201]

REVISED CREDIT SYSTEM

Time	e: 3 Hours Date: 13 June 2018 Max. M	arks: 50	
Instructions to Candidates: Answer ALL the questions. Missing data may be suitably assumed.			
1A.	Define latching and holding currents as applicable to an SCR. Show these currents of its static I-V characteristics.	on (03)	
1B.	With the help of the equivalent circuit for IGBT, discuss how latch up occurs in IGB What modification is required in device construction to avoid latch up?	T. (03)	
1C.	Draw a neat circuit for forced current commutation of an SCR. Hence, plot the waveforms for voltage across the capacitor, voltage across the SCR and voltage across the load.		
2A.	A three phase full converter bridge is connected to supply voltage of 400 V(line-lin and a frequency of 50 Hz. The source inductance is 4 mH. The load current on dc sid is constant at 20 A. If the load consists of dc source of internal emf 400 V with intern resistance of 1 Ω , then calculate delay angle.	le	
2B.	A controlled half-wave rectifier has an ac input of 120 V rms at 60 Hz, R = 2 Ω , L = 2 mH and V _{dc} = 100 V. The delay angle is 45°. Determine an expression for the output current and hence find the rms value of the current.		
2C.	A controlled single phase bridge rectifier has 20 Ω resistive load and has a 120 V rm 60 Hz ac source. The delay angle is 45°. Determine average load current, rms loa current and the input power factor.		
3A.	A single phase to single phase Cycloconverter is delivering power to a resistive loa. The frequency ratio fo/fs=1/3. The firing delay angle α for all the thyristors are the same. Sketch the output voltage waveform in synchronization with input voltage for α =45°.	ne	
3B.	A buck converter has the following parameters: $V_s = 15 \text{ V}$, $D = 0.6$, $L = 10 \mu\text{H}$, $C = 50 \mu\text{and}$ and $R = 5 \Omega$. The switching frequency is 150 kHz. Determine output voltage maximum and minimum inductor currents.	ιF	
3C.	With the help of neat circuit schematic and triggering sequence, plot any two phase voltage waveforms and corresponding line voltage waveform for a three phase square wave bridge inverter when conduction angle of each device is 180°.		

4A.	Discuss the terms (i) Time ratio control (ii) Current limit control	(02)
4B.	With the help of circuit schematic and relevant waveforms, explain unipolar switching scheme as applied to a full bridge inverter. Hence, plot the harmonic spectrum.	(04)
4C.	Discuss space vector pulse width modulation (SVPWM) technique with respect to a 3 pole voltage source inverter. Mention use of null states in SVPWM technique.	(04)
5A.	With a neat circuit schematic, explain the working of a single phase full bridge square wave inverter. Hence, plot the output voltage waveform in synchronization with the switching scheme. Also, draw the harmonic spectrum.	(05)
5B.	With the help of neat circuit schematic, draw the voltage across the resonant capacitor and the current through the resonant inductor for a zero voltage switched buck converter.	(05)