Reg. No.

MANIPAL INSTITUTE OF TECHNOLOGY

(A constituent unit of MAHE, Manipal)

SIXTH SEMESTER B.Tech. (E & C) DEGREE END SEMESTER EXAMINATION APRIL 2018

SUBJECT: VLSI/ULSI PROCESS TECHNOLOGY (ECE - 4016)

TIME: 3 HOURS

MAX. MARKS: 50

Instructions to candidates

- Answer **ALL** questions.
- Missing data may be suitably assumed.
- 1A. A silicon ingot of 300mm diameter and 1m length is grown using C-Z technique. Initial mass of the melt is twice the mass of the final silicon ingot. Given, $k_{As} = 0.3$, $\rho silicon = 2.33$ g/cm³, molecular weight of arsenic = 74.92 g/mol, and Avogadro's number = 6.022×10^{23} atoms/mole.
 - i) At the middle of the wafer length (0.5m), measured dopant (arsenic) concentration is 5×10^{16} atoms/cm³. Determine the concentration of arsenic atoms in the melt.
 - ii) Calculate the mass of the silicon ingot and initial silicon charge
 - iii) Calculate weight of arsenic to be added to the silicon melt
 - iv) Plot arsenic concentration along the length of the ingot. Values at 0, 0.5, and 1 units of total length are sufficient.
 - v) Do you anticipate similar trend in radial direction? If yes, Why?
- 1B. Describe the F-Z process for growing single-crystal Si. Explain how this method can be used to purify Si ingots.
- 1C. Draw the n-type and p-type wafers for the <111> and <100> surface orientations.

(5+3+2)

- 2A. It is required to grow a 0.9μm thick oxide on the (100) Si wafer at 1200 °C. Answer the questions given below assuming both wet and dry oxidation.
 - i) How long does it take to grow the first 300nm?
 - ii) How long does it take to grow the second and third 300nm?
 - iii) Sketch the graph of the oxide thickness as a function of growth time
 - iv) Explain why the trend is not linear
- 2B. Briefly describe the "LOCOS" process. What is "Bird's Beak"? What materials/chemicals are essential to do LOCOS? Why do you need a "recessed" structure? Explain.
- 2C. Define packing density and calculate the same for a BCC structure.

- (5+3+2)
- 3A. A p-type silicon substrate with background doping concentration of 1×10¹⁷cm⁻³ is used to make P-N junction. A pre-deposition step at 1000°C followed by a drive-in diffusion of 3 hours at 1100°C is performed. Calculate
 - i) the pre-deposition time and surface concentration. Assume dopant dose of 1×10^{16} cm⁻².
 - ii) the surface concentration after drive-in diffusion
 - iii) the junction depth after pre-deposition and drive-in
 - iv) the final sheet resistance of the diffused layer
- 3B. List the merits and demerits of dry etching over wet etching
- 3C. What are molecular beams? Why are they used in Ion Implantation system over Ion beams?

(5+3+2)

- 4A. A boron doped silicon wafer with background dopant concentration of 1×10^{16} cm⁻³ is ion implanted with phosphorus at a dose of 1×10^{16} cm⁻². If the implantation results in a projected range of 135nm and a straggle of 53.5nm and an average mobility of 1000 cm⁻²/V.s,
 - i) Is the junction formed is P^+ -N or N^+ -P?
 - ii) What is the maximum implant concentration in the implanted layer?
 - iii) What is the resulting junction depth?
 - iv) What is the sheet resistance of the implanted layer?
 - v) If a beam current of $100\mu A$ was swept over a square area of $10cm \times 10cm$, how long was the implantation process?
- 4B. Explain the various ways of realizing resistors in an IC.
- 4C. List the problems associated with thermal evaporation system and explain how some of the problems can be overcome using sputter deposition.

(5+3+2)

- 5A. With necessary diagrams explain two ways of realizing a negative of a given mask.
- 5B. List the various isolation techniques used in p-n junction and explain them with necessary diagrams.
- 5C. What is electro-migration? What are the problems associated with it? What is the problem in using copper over aluminium to overcome electro-migration?

 $C_S = kC_M(1-X)^{k-1}$

(5+3+2)

RATE CONSTAN	ITS FOR WE	OXIDATION	OF SILICON	
Oxidation Temperature (°C)	A (µm)	B (µm²/hr)	B/A (µm/hr	r (hr)
1200	0.05	0.720	14.40	0
1100	0.11	0.510	4.64	0
1000	0.226	0.287	1.27	0
920	0.50	0.203	0.405	0

B (um2/hr) τ (hr) B/A (um/hr) A (um) Oxidation Temperature (°C) 0.040 0.045 1.12 0.027 1200 0.067 0.090 0.027 0.30 1100 0.37 0.071 0.165 0.0117 1000 1.40 0.0.0208 0.0049 920 0.235 9.0 0.0030 0.0011 0.370 800 0.00026 81.0 700

	D at 1000°C	D at 1100°C	Solubility at 1000°C	Solubility at 1100°C		
Boron	$3 \times 10^{-15} \text{ cm}^2/\text{s}$	$2 \times 10^{-14} \text{ cm}^2/\text{s}$	2×10 ²⁰ cm ⁻³	3×10 ²⁰ cm ⁻³		
Phosphorus	$4 \times 10^{-15} \text{ cm}^2/\text{s}$	$3 \times 10^{-14} \text{ cm}^2/\text{s}$	8×10 ²⁰ cm ⁻³	1.2×10 ²¹ cm ⁻³		
Hole mobility = $250 \text{cm}^2/\text{V.s}$ and Electron mobility = $1000 \text{cm}^2/\text{V.s}$						

z	erfc(z)	z	erfc(z)	z	erfc(z)
0.0	1.0000000	1.3	0.06599207	2.6	0.00023603
0.1	0.88753708	1.4	0.04771489	2.7	0.00013433
0.2	0.77729741	1.5	0.03389486	2.8	0.00007501

RATE CONSTANTS FOR DRY OXIDATION OF SILICON