Reg. No.

MANIPAL INSTITUTE OF TECHNOLOGY

MANIPAL (A constituent unit of MAHE, Manipal)

SIXTH SEMESTER B.Tech. (E & C) DEGREE END SEMESTER EXAMINATION APRIL 2018 SUBJECT: CIPHER SYSTEMS (ECE - 4019)

TIME: 3 HOURS

MAX. MARKS: 50

Instructions to candidates

- Answer **ALL** questions.
- Missing data may be suitably assumed.
- 1A. Determine a smallest nonnegative solution for a system of congruence's using Chinese Remainder Theorem. $5x \equiv 14 \mod 17$; and *and* $3x \equiv 2 \mod 13$
- 1B. Explain the key generation in DES.
- 1C. Determine the index of coincidence and length of the key if the relative frequencies for certain ciphertext corresponding to alphabets A to Z are {6,0,1,4,3,8,3,9,7,2,4,9,2,3,1,3,4,4,8,2,3,5,5,7,2,0}.

(5+3+2)

- 2A. Decrypt the intercepted message "RBW?XA" received by Bob that was encrypted using affine transformation on digraphs. Bob detects the enciphering key used is a=347, b=523. Alphabet is { A=0, B=1, ...Z, .(dot), @(blankspace, ?=28).
- 2B. Explain Whirlpool algorithm.
- 2C. Decrypt the ciphertext "DOKWFMPGS" using Vigenere cipher with key LEMON.

(5+3+2)

3A. Encrypt the plaintext 10100101 using the S-DES with key (0010010111). Use the given permutation and substitution table.

P4	2	4	3	1								[1	0	3	2	ſ	0	1	2	3
											~	3	2	1	0		2	0	1	3
P8	6	3	7	4	8	5	10	9			$S_0 =$	0	2	1	3	and $S_1 =$	3	0	1	0
P10	3	5	2	7	4	10	1	9	8	6		3	1	3	2		2	1	0	3
IP	2	6	3	1	4	8	5	7												
EP	4	1	2	3	2	3	4	1												

- 3B. Construct $GF(2^4)$ using $p(x) = x^4 + x + 1$. Find one primitive and non-primitive field elements. List the order of those elements.
- 3C. Find the number of affine transformation keys if n=60.

(5+3+2)

- 4A. Using AES key expansion algorithm compute the output of Mix column transformation for the input [D4, BF, 5D, 30]
- 4B. Merkle Hellman Knapsack cryptosystem uses the public key sequence is $\{57, 14, 3, 24, 8\}$ and the private key is b = 23, n = 61. Find the superincreasing sequence.
- 4C. Determine two points and its image on the elliptic curve defined by $E_{11}(1,6)$

(5+3+2)

- 5A. Alice chooses private key $d_A = 67$. Find Alice's public key computed using El-Gamal algorithm & keys ($p_A = 107$, $\alpha_A = 2$). Bob chooses random integer k = 45 to encrypt plaintext "**B** (ASCII code 66)" and sends to Alice. Find the ciphertext received by Alice and decrypt it.
- 5B. Draw the block diagram of HMAC. Explain the computation of n-bit HMAC.
- 5C. Compute 99⁸² mod 991 using repeated squaring method.

(5+3+2)