THE PROPERTY HAS SEEN IN FAMILIES.		Carlotte -25	eta konor	THE STREET STREET
Reg. No.				

VI SEMESTER B.TECH. (INFORMATION TECHNOLOGY/COMPUTER AND COMMUNICATION ENGINEERING) MAKEUP EXAMINATIONS, JUNE 2018

SUBJECT: PROGRAM ELECTIVE III - SOCIAL NETWORK ANALYTICS [ICT 4021]

REVISED CREDIT SYSTEM (22/06/2018)

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates:

- Answer ALL questions.
- * Write the detailed steps for all the problems.
- Missing data, if any, may be suitably assumed.
- 1A. Explain the Erdos-Renyi random network model by highlighting the assumptions, key parameters, steps to construct the model, degree distribution, and the number of edges per node.
- **1B.** Explain the three different ways of representing a social network as a graph with an example.
- 1C. Give the matrix g_2 that represents walks of length 2 from a node i to node j for the graph shown in Fig.Q.1C

Fig.Q.1C

2A. Find the normalized between centrality and normalized closeness centrality for the network given in Fig.Q.2A

Fig.Q.2A

2B. Define the length of a path. Determine the shortest distance from node 'c' to node 'e' and distance from node 'b' to node 'd' by drawing neat diagrams of breadth-first-search for the network given in Fig.Q.2B

5

2

3

ICT 4021

Page 1 of 2

Fig.Q.2B

2C.	Find the diameter and average clustering coefficient of the network given in Fig.Q.2B					
3A.	Explain the following:					
	(i) Threshold contagion					
	(ii) Triadic closure					
	(iii)Assumptions of Kleinberg model					
	(iv)Trawling	5				
3B.	Explain the Freeman's network centralization with an example.					
3C.	Describe the 2 steps used to develop scale-free network in Barabasi-Albert model.	2				
4A.	Explain the game theoretical model of diffusion based on two-player coordination game.					
	Describe the simple myopic model that helps a node 'v' in decision making, if the two-					
	player game needs to be expanded for a large network.	5				
4B.	Explain the "giant component" with an example. How is it different from the connected component?	3				
4C.	Differentiate between "overlapping" and "nonoverlapping" communities with an example.	2				
5A.	Explain any one application of SNA.	5				
5B.	Explain the small-world network model proposed by Watts-Strogatz.	3				
50	Describe the two effects of imitating the behavior of others	2				