

## MANIPAL INSTITUTE OF TECHNOLOGY

(A constituent unit of MAHE, Manipal)

# SIXTH SEMESTER B.TECH. (INSTRUMENTATION AND CONTROL ENGG.)

## END SEMESTER EXAMINATIONS, JUNE - 2018

### SUBJECT: EMBEDDED SYSTEMS DESIGN [ICE 4002]

### Time: 3 Hours

Г

### MAX. MARKS: 50

٦

|     | Instructions to Candidates:                                                                                                                                                           |   |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|     | Answer ALL the questions.                                                                                                                                                             |   |
|     | <ul> <li>Missing data may be suitably assumed.</li> </ul>                                                                                                                             |   |
| 1A. | Using revenue model, derive the percentage revenue loss equation for any rise angle, rather than for 45 degrees.                                                                      | 4 |
| 1B. | With block diagram explain the design technology and the techniques to enhance the productivity.                                                                                      | 4 |
| 1C. | For the design of a product NRE $cost = $2000$ , Unit $cost = $100$ , Number of Units = 10. Calculate the total cost and per product cost.                                            | 2 |
| 2A. | Describe the basic architecture of a General Purpose Processor with block diagram.                                                                                                    | 4 |
| 2B. | Design a pulse divider to slow the preexisting pulse so that the output is high for<br>every 4 pulses detected. Use the state diagram for the design and obtain the final<br>circuit. | 4 |
| 2C. | Build a 2 input NOR gate using CMOS transistor. Analyze the implementation using Truth Table.                                                                                         | 2 |
| 3A. | Compare EPROM and EEPROM.                                                                                                                                                             | 5 |
| 3B. | Explain the addressing mechanism for memory read operation in basic DRAM architecture with block diagram.                                                                             | 3 |
| 3C. | Design 1K X 32 ROM using 1K X 8 ROMs.                                                                                                                                                 | 2 |
| 4A. | Explain shared memory and message passing with an example.                                                                                                                            | 5 |
| 4B. | Describe Program State Machine Model with an example.                                                                                                                                 | 3 |
| 4C. | Brief the importance of pipelined instruction execution.                                                                                                                              | 2 |
| 5A. | Explain the basic operations defined by concurrent process model.                                                                                                                     | 4 |
| 5B. | Describe the practical issues related to computer based control.                                                                                                                      | 4 |
| 5C. | Brief the key features in modelling real physical systems.                                                                                                                            | 2 |