

VI SEMESTER B.TECH. (MECHATRONICS ENGINEERING) MAKE-UP EXAMINATIONS, MAY 2018

SUBJECT: ARTIFICIAL INTELLIGENCE [MTE 4027]

Time: 3 Hours MAX. MARKS: 50

Instructions to Candidates:

- ❖ Answer **ALL** the questions.
- Data not provided may be suitably assumed with justification
- 1A Describe the feed forward architecture in artificial neural network.
- **1B** Given two fuzzy sets $A = \frac{0.4}{x_1} + \frac{0.3}{x_2} + \frac{1}{x_3} + \frac{0.9}{x_4}$ $B = \frac{0.2}{x_1} + \frac{0.6}{x_2} + \frac{1}{x_3} + \frac{0.75}{x_4}$ **03** Find: i) AUB ii) A\triangle B iii) center and height of fuzzy sets A and B
- 1C Perform 4 training steps of delta learning rule assuming unipolar continuous of activation function for the following data pairs.

$$\{X^1 = \begin{bmatrix} 0 & -1 & 2 \end{bmatrix}^t, d_1 = -1\}$$

 $\{X^2 = \begin{bmatrix} -1 & -2 & 1 \end{bmatrix}^t, d_2 = +1\}$

The initial weights are $W^t = [1 \ 0 \ 1]^t$. Learning constant is 0.5.

- 2A Compare Hebbian learning rule and Perceptron learning rule. 03
- 2B "XOR problem cannot be implemented using single layer perceptron network". 03
 Is the above statement TRUE or FALSE? Justify your answer.
- 2C Given two fuzzy sets High and Low as below: 04

High:
$$\frac{0.3}{1} + \frac{0.6}{2} + \frac{0.9}{3}$$
 Low: $\frac{0.8}{-1} + \frac{0.5}{0} + \frac{0.2}{1}$

Perform DR implication to interpret "IF x is High THEN y is Low".

- 3A Discuss the steps involved in modelling of a neuro controller. 05
- 3B Perform single step error-back propagation of a multilayer perceptron network for the given data. Use $\eta=1$, $\lambda=1$ and both the layers are unipolar continuous.

$$Z = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix} \qquad V^t = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 0 & 3 \end{bmatrix} \qquad W^t = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} \qquad d = -1$$

[MTE 4027] Page **1** of **2**

- **4A** Explain the significance of Genetic Algorithm over ANN and Fuzzy system.
- **4B** Explain the characteristics of the three categories resulting from integration of neural networks and fuzzy systems.

02

02

4C Perform five training steps using Perceptron learning rule for the data given **05** below:

$$\begin{cases}
X_1 = \begin{bmatrix} 1 \\ -2 \\ 0 \\ -1 \end{bmatrix}, d_1 = -1 \\
X_2 = \begin{bmatrix} 0 \\ 1.5 \\ -0.5 \\ -1 \end{bmatrix}, d_2 = -1 \\
X_3 = \begin{bmatrix} -1 \\ 1 \\ 0.5 \\ -1 \end{bmatrix}, d_3 = 1
\end{cases}$$

The initial weights are $W^1 = [1 - 1 \ 0 \ 0.5]^t$. Use bipolar binary neurons and c=1.

- **5A** Compare biological neuron and artificial neuron.
- **5B** Differentiate fuzzification and defuzzification. List the different types of fuzzifiers. **04**
- 5C Let $U = \{a, b, c\}$, $V = \{p, q\}$ and assume a fuzzy if then rule: "If x is A then y is B" is given where, $A = \frac{0.3}{a} + \frac{1}{b} + \frac{0.85}{c}$ and $B = \frac{0.5}{p} + \frac{0.6}{q}$. Also given is a fact "x = more or less A". Use Generalized Modus Ponens to derive a conclusion in the form "y is B'", where A \rightarrow B is interpreted using Mamdani Product Implication.