Reg. No.

MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL (A constituent Institution of MAHE, Manipal)

VII SEMESTER B.TECH (ELECTRICAL & ELECTRONICS ENGINEERING)

MAKE UP EXAMINATIONS, MAY 2018

SUBJECT: ADVANCED CONTROL SYSTEMS [ELE 431]

REVISED CREDIT SYSTEM

Time	: 3 Hours	Date: 05 MAY 2018	Max. Marks: 50
Instru	 Answer ANY FIVE FULL quest Use of ordinary graph sheet is Missing data may be suitably a 	tions. allowed. assumed.	
1A. 1B. 2.	Explain the following: i) Saturation quenching Linearize the non-linear equation Derive the describing function of G(s)=k/s(s+1)(0.5s+1) cascaded w range of gain k for which limit cycl	n nonlinearity ii) Jump resonance and is $z = 4 \sin \theta$ around $\theta = \pi / 5$. F on-off relay nonlinearity. A unity feed with on-off relay nonlinearity with M=2 le is predicted. Also determine the stabilit	ii) Asynchronous (06) (04) back system has I. Determine the y, amplitude and
3A. 3B.	frequency of the limit cycle when g Draw the phase trajectory for the using isocline method (2 quadrants Find the optimal control vecto performance index $\mathbf{J} = \int_0^\infty u^2 dt$ for	gain of the linear system is k=10. equation given below with initial conditi s with minimum six isoclines) $\ddot{x} + 0.8\dot{x} +$ r using Dynamic programming which r the system described by $\dot{x} = x + u$.	(10) $aons (x, \dot{x}) = (0,1)$ 3x = 0. (05) minimizes the (05)
4A. 4B.	Using Pontryagin's minimum print given by $\dot{x} = -x + u$, $x(0)=1$, $x(u)$ unrestricted. Determine the stability region of lyapunov's method. $\ddot{x} - (1 - x^2)$	ciple, obtain the optimal control signal u*((2)= 0 which minimizes $J = \int_0^2 (-x + t) dt$ the equilibrium point(s) of a system gi $J^2 \dot{x} + x = 0$.	(t) for the system $u)^2 dt$ with u(t) (05) wen below using (05)
5.	 Consider a satellite attitude control system whose state space model is given by		
6A. 6B.	With a neat block diagram, explain Consider a system given by the fol $\dot{x} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ Design a Kalman Filter for the abo Also draw the block diagram of the	any one type of adaptive control system. lowing state space model $x + \begin{bmatrix} 0\\10 \end{bmatrix} u + \begin{bmatrix} 0\\1 \end{bmatrix} w; y = \begin{bmatrix} 1 & 0 \end{bmatrix} x + v;$ we system, when the noise co-variance Que system with Kalman filter.	(03) N=0.6 and $R_N=1$.