Reg. No.			
	1 1 1		
100	1 1 1	3 1 1	

MANIPAL INSTITUTE OF TECHNOLOGY

(A constituent unit of MAHE, Manipal)

I SEMESTER B.TECH END SEMESTER MAKEUP EXAMINATIONS, December, 2018 SUBJECT: ENGINEERING MATHEMATICS I (MAT 1151) REVISED CREDIT SYSTEM

Time: 3 Hours

Date: 21.12. 2018

MAX. MARKS: 50

Instructions to Candidates

Answer ALL the questions.

1A.

Find all the eigenvalues and eigenvector corresponding to largest eigenvalue of the matrix $A = \begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$

3

- 1B. Use fourth order R-K method find y(0.5) for the equation : $(x+y) \frac{dy}{dx} = 1$, y(0.4) = 1 correct to four decimal places. Take h = 0.1
- 1C. Solve by the method of variation of parameters, $\frac{d^2y}{dx^2} y = \frac{2}{(1 + e^x)}$
- Reduce the matrix $A = \begin{bmatrix} 2 & 1 & 3 & 4 \\ 4 & 0 & 2 & 1 \\ 2 & 3 & 4 & 7 \end{bmatrix}$ to echelon form & hence find rank of A.

Solve the system of equations

$$10 x + y + z = 12$$

2B.
$$x + 10 y + z = 12$$

 $x + y + 10 z = 12$

by Jacobi's iterative method. Carry out four iterations up to four decimal places. Take initial approximations $x_0 = 0$, $y_0 = 0$, $z_0 = 0$

3

2C. Solve
$$x y (1 + x y^2) \frac{dy}{dx} = 1$$

4

Reg. No.

MANIPAL INSTITUTE OF TECHNOLOGY

(A constituent unit of MAHE, Manipal)

- Using Simpson's 1/3 rule, evaluate the integral $\int_{0}^{1} \frac{dx}{1+x^2}$ with 6 sub intervals. 3B.
- Solve $(2x-1)^2 \frac{d^2y}{dx^2} + (2x-1) \frac{dy}{dx} 2y = 8x^2 2x + 3$
- 3C. x + y + z = 6 $\begin{array}{cccc}
 x & -y+2z & = 5 \\
 3x + y + z & = 8
 \end{array}$
- 4A. Solve $\frac{d^2y}{dx^2} 4 \frac{dy}{dx} + 4y = 8 e^{2x} x^2 \sin 2x$ 3
- 4B. Define maximal linearly independent set of vectors. Prove that a set of non-3
- Using Lagrange's formula find the value of f(3), given 4C. f(x)5 4
- **5A.** Find the root of the equation $x e^x = \cos x$ in the interval (0,1) using the method of false position. Carry out four iterations correct to four decimal places 3
- Using Gram-Schmidt process, construct an orthonormal basis vectors from : 3
- 5C. Solve by third order Taylor series method of the $\frac{dy}{dx} = \frac{x^3 + xy^2}{e^x}$, y(0) = 1 for y at x = 0.1 and x = 0.2