Question Paper

Exam Date & Time: 01-Jan-2019 (08:30 AM - 11:30 AM)

FIRST SEMESTER B.TECH END SEMESTER MAKE UP EXAMINATIONS, DEC 2018 Engineering Physics [PHY 1051 - 2018 -PHY]

Marks: 50

Α

Answer all the questions.

Instructions to Candidates: Missing data may be suitably assumed

Instruct	ions to Canuluates. Missing uata may be	suitably assumed			
Physic Speed Electr Boltzr	ical Constants:d of light in vacuum = 3.00×10^8 m/sron mass= 9.11×10^{-31} kgmann constant= 1.38×10^{-23} J/ K	Electron charge Planck's constant	= 1.60 × 10 = 6.63 × 10	⁻¹⁹ C ⁻³⁴ J.s	
1)	Discuss qualitatively, the Fraunhofer diffraction at a single-slit. ⁽⁴⁾				
A)					
^{B)} A converging lens of diameter $d = 32$ mm has a focal length 24 cm. What angular separation (θ_R) must two distant point				(3)	
	objects have to satisfy Rayleigh's criterion? Assume that the wavelength is $\lambda = 550$ nm. How far apart (Δx) are the centers				
	of the diffraction patterns in the focal plane of the lens?				
C)	The intensity on the screen at a d	rertain noint in a do	uble-slit	(3)	

- ⁽³⁾ The intensity on the screen at a certain point in a double-slit ⁽³⁾ interference pattern is 64.0% of the maximum value. (i) What minimum phase difference (in radians) between sources produces this result? (ii) Express this phase difference as a path difference for 486.1 nm light.
- ²⁾ Solve the Schrodinger equation for a quantum particle of mass $^{(5)}$ ^{A)} **m** trapped in a one-dimensional infinite potential well (box) of length **L** and obtain the expressions for wave-functions of the particle.
 - ^{B)} A 30 eV electron is incident on a square barrier of height 40 eV. ⁽³⁾ What is the probability that the electron will tunnel through the barrier if its width is 0.10 nm?
 - ^{C)} Distinguish between unpolarized and linearly polarized light. ⁽²⁾
- ³⁾ What are the features of photoelectric effect-experiment ⁽⁴⁾ explained by Einstein's photoelectric equation?
 - ^{B)} Explain (i) Stefan's law (ii) Wien's displacement law (iii) Plank's ⁽⁴⁾ law.
 - C) An electron has a kinetic energy of 3.0 eV. Find its de Broglie (2)

Duration: 180 mins.

		wavelength.	
4)	A)	Sodium is a monovalent metal having a density of 971 kg/m ³ and ⁽⁵⁾ a molar mass of 0.023 kg/mol. Use this information to calculate (a) the density of charge carriers and (b) the Fermi energy. (N _A = 6.023×10^{23})	
	В)	Explain the following terms with respect to LASER (i) spontaneous emission (ii) stimulated emission (iii) population inversion.	(3)
	C)	Explain the origin of continuous X-rays.	(2)
5) 4 E	A)	Based on the allowed states of a particle in a three dimensional box, derive the density-of-states function.	(5)
	В)	The J = 0 to J = 1 rotational transition of the CO molecule occurs at a frequency of 1.15×10^{11} Hz. (i) Use this information to calculate the moment of inertia of the molecule. (ii) Calculate the bond-length of the molecule. (Mass number: Carbon - 12, Oxygen - 16 and mass of proton m _p = 1.67×10^{-27} kg)	(3)
	C)	Most solar radiation has a wavelength of 1 μ m. What energy	(2)

⁾ Most solar radiation has a wavelength of 1 μ m. What energy ⁽²⁾ gap should the material in solar cell have in order to absorb this radiation ?

-----End-----