Exam Date & Time: 15-Nov-2018 (02:00 PM - 05:00 PM)

water(n = 1.3)?

MANIPAL ACADEMY OF HIGHER EDUCATION

INTERNATIONAL CENTRE FOR APPLIED SCIENCES FIRST SEMESTER B.SC. Applied Sciences in Engg. END - SEMESTER THEORY EXAMINATIONS NOVEMBER - 2018 (For 2016 batch)

Physics - I [PH 111]

Marks: 100

Duration: 180 mins.

Answer 5 out of 8 questions. Missing data, if any, may be suitably assumed. Useful constants Planck's constant $h = 6.63 \times 10^{-34}$ Js. Velocity of light $c = 3x \ 10^8 \ ms^{-1}$. Charge on electron = 1.6×10^{-19} C. Mass of electron = 9.1×10^{-31} kg. Mass of proton = 1.67×10^{-27} kg. 1) What is interference of light? Explain the production of coherent waves. (6) A) B) What is a phasor? Obtain an expression for the intensity distribution in double slit (6)interference using phasor method. C) A double-slit arrangement produces interference fringes for sodium light (4) (wavelength = 600 nm) that are $0.25\hat{A}^\circ$ apart. For what wavelength would the angular separation be 10% greater? Assume, the angle θ is small. D) (4)When the movable mirror is moved through a distance of 0.230 mm, 800 fringes swept across the field of view. What is the wavelength of the light used? 2) (6) Explain : i) Rayleigh's criteria of resolution of the images. b) X-ray diffraction by crystals. A) B) (6) Draw the schematic diagram of interference pattern due to relatively wide slits. Compare it with that of narrow slits pattern. C) A single slit is illuminated by light whose wavelengths are λ_a and λ_b , so chosen that ⁽⁴⁾ the first diffraction minimum of λ_a component coincides with the second minimum of the $\lambda_{\mathbf{b}}$ component. i) What is the relationship between the two wavelengths? ii) Do any other minima in the two patterns coincide? D) A diffraction grating 3 cm wide produces a deviation of 33.2Ű in the second order (4) with a light of wavelength 589 nm. Find the total number of rulings on the grating. 3) Write the conditions for constructive and destructive interference of reflected light (6) from a wedge shaped air film enclosed between two glass plates assuming normal A) incidence. Explain why an excessively thin film appears dark? B) What is a grating? Deduce grating equation. (4) C) In a Newton's rings experiment, the radius of curvature R of the lens is 5.0m and its ⁽⁶⁾ diameter is 22 mm, wavelength of the light used = 600 nm. i) How many rings are

produced? ii) How many rings would be seen if the arrangement is immersed in

- A grating has 6000 rulings/cm, how many orders of the entire visible spectrum (400-⁽⁴⁾ 700nm) can be produced?
- ⁴⁾ Draw the graph of black body radiation curve. What is ultra-violet catastrophe? ⁽⁶⁾
 - A) B)
- What is Compton effect? What are classical predictions and experimental ⁽⁶⁾ observations?
- ^{C)} Electrons are ejected from a metallic surface with speeds up to 4.60 x 10⁵ m/s when ⁽⁴⁾ a light of wavelength of 625 nm is used. (a) What is the work function of the surface? (b) What is the cut-off frequency for this surface?
- ^{D)} An electron and a bullet (m= 20gm) each have a velocity of 500m/s accurate to ⁽⁴⁾ within 0.010%. Within what limits could we determine the positions of the objects along the direction of the velocity?
- ⁵⁾ What are matter waves? Explain the physical significance of a wave function? ⁽⁶⁾
 - A)
 B) Deduce wave function of a particle of mass m confined in a finite potential well. (6)
 - ^{C)} A particle of mass m is confined to a one dimensional box between x=0 and x=L. ⁽⁴⁾ Find the expectation value of the position x of the particle in the ground state. Assume

$$\psi_n(x) = \sqrt{\frac{2}{L}} \sin\left(\frac{n \pi x}{L}\right)$$

- ^{D)} A 0.500 kg baseball is confined between two rigid walls of a stadium that can be ⁽⁴⁾ modelled as a box of length 100m. Calculate i) the minimum speed of the ball ii) If the ball now moves with a speed of 150m/s determine the quantum number of the state in which the baseball resides.
- ⁶⁾ Draw the wave functions and probability densities of a particle confined in finite and ⁽⁶⁾ _{A)} infinite potential wells for the first three energy states.
 - A)
 - ^{B)} What is Radial probability density? Obtain an expression for the same in case ⁽⁴⁾ electron of an hydrogen atom.
 - ^{C)} i) Calculate the most probable value and average value of r for an electron in the ground ⁽¹⁰⁾

state of the hydrogen atom. Given :

$$\psi_{1S}(r) \;=\; \; \frac{1}{\sqrt{\pi a_o^2}} exp\left(-\frac{r}{a_o}\right) \label{eq:psi_spin}$$

ii) Also calculate the probability that the electron will be found outside the first Bohr radius.

- 7) Explain briefly the components of a laser. (6) A) B) Give construction and working of an optical fibre. (6) C) A pulsed laser emits light at a wavelength of 650 nm. If the energy release (4) per pulse is 150 mJ, how many photons are there in each pulse? D) (4) A guantum oscillator consists of an electron bound by a restoring force constant 9 N/m. What is the longest wavelength of light that can excite the oscillator? 8) Draw a representative graph of Resistance Vs Temperature for a superconductor and ⁽⁴⁾
 - Draw a representative graph of Resistance Vs Temperature for a superconductor and $^{(4)}$ a normal conductor and hence explain critical temperature.
 - ^{B)} Explain i) Meissner effect ii) Doping of semiconductors iii) Pumping in lasers ⁽⁶⁾

- ^{C)} Most solar radiation has awavelengthof0.750 μ m or less. What energy gap should the material in solar cell have in order to absorb this radiation? Is silicon (Eg= 1.14 eV) appropriate?
- ^{D)} Calculate the energy of a conduction electron in silver at 800 K, assuming ⁽⁵⁾ the probability of finding an electron in that state is 0.950. The Fermi energy is 5.48 eV at this temperature.

-----End-----