Question Paper

Exam Date & Time: 01-Dec-2018 (02:00 PM - 05:00 PM)

MANIPAL ACADEMY OF HIGHER EDUCATION

INTERNATIONAL CENTRE FOR APPLIED SCIENCES II SEMESTER B.S. ENGG. END SEMESTER EXAMINATION - NOV./ DEC. 2018 Data Structures [CS 123]

Marks: 100

Duration: 180 mins.

Answer 5 out of 8 questions.

Missing data, if any, may be suitably assumed

- ¹⁾ What is an algorithm? What are the characteristics of a ⁽⁶⁾ good algorithm?
 - ^{B)} How do you find the complexity of an algorithm? What is ⁽⁸⁾ the relation between the time and space complexities of an algorithm? Justify your answer with an example.
 - ^{C)} The factorial function n! has value 1 when $n \le 1$ and value ⁽⁶⁾ n*(n-1)! when n>1. Write recursive function to compute n!
- ²⁾ The Fibonacci numbers are defined as $f_0=0$, $f_1=1$, and $f_i=f_{i-}$ ⁽⁶⁾
 - _{A)} $1 + f_{i-2}$ for i>1. Write iterative function to compute f_i .
 - ^{B)} What is a Stack? Write a function with all necessary ⁽⁸⁾ operations on stack.
 - ^{C)} Write an algorithm for evaluation of postfix expression ⁽⁶⁾ using stack.
- ³⁾ Convert the infix expression $((a+b)*c-(d-e))^{(f+g)}$ to ⁽⁶⁾
 - postfix expression using stack. Show the symbol scanned, postfix string and operStack contents in each scan in the form of table.
 - ^{B)} What are circular queues? Write down routines for inserting ⁽⁸⁾ and deleting elements from a circular queue implemented using arrays.
 - ^{C)} Write the following algorithm/function for singly linked list. ⁽⁶⁾ Use the following declarations only. The functions should

print appropriate message(s).

i) void InsertFront(int info)

- ii) int Search(int item)
- ⁴⁾ Write the algorithm/function for doubly linked list (DLL) to ⁽⁶⁾ insert an item at the rear and to delete a given item. Use the following declarations only. The functions should print appropriate message(s).

i) void InsertRear(int x)

- ii) void Delete(int x)
- ^{B)} Write a recursive function for binary search. Compare the ⁽⁸⁾ time complexities of linear and binary search techniques.
- ^{C)} Define a Tree? Prove the following by considering the tree ⁽⁶⁾ shown in Figure 1:

i) The maximum number of nodes on level i of a binary tree is 2^{i} -1, $i \ge 1$.

ii) The maximum number of nodes in a binary tree of depth k is 2^{k} -1, k \geq 1

Justify your answer?

Figure 1: Binary tree

⁵⁾ What is a Binary Search Tree (BST)? Make a BST for the ⁽¹²⁾ following sequence of numbers.

45, 36, 76, 23, 89, 115, 98, 39, 41, 56, 69, 48 Traverse the tree in Pre-order, In-order and postorder.

- ^{B)} What are expression trees? Represent the given expression ⁽⁸⁾ (a-b)/((c*d)+e)) using a tree. Comment on the result that you get when this tree is traversed in Pre-order, In-order and post-order.
- ⁶⁾ Define a graph. What are the different ways of representing ${}^{(8)}$ a graph? Represent the following graph (refer Fig. 2) using those ways.

- ^{B)} Show the result of running Breadth First Search and Depth First (12)Search on the directed graph given below (refer Fig. 3) using vertex 3 as source. Show the status of the data structure used at each stage.

Figure 3

- 7) (10)Sort the following sequence of keys using merge sort. 66, 77, 11, 88, 99, 22, 33, 44, 55 A)
 - B) What is quick sort? Sort the following array using quick sort ⁽¹⁰⁾ method.

24 56 47 35 10 90 82 31

8)

- The following values are to be stored in a hash table (8) 25, 42, 96, 101, 102, 162, 197 A) Describe how the values are hashed by using division method of hashing with a table size of 7. Use chaining as the method of collision resolution.
- B) (6) What is a height balanced tree (AVL)? Explain how the height is balanced after addition/deletion of nodes in it?
- C) (6) Write short notes on Time Complexity, Big O notation and Insertion Sort.

-----End-----