

MANIPAL ACADEMY OF HIGHER EDUCATION

INTERNATIONAL CENTRE FOR APPLIED SCIENCES END SEMESTER EXAMINATION CHEMICAL ENGINEERING THERMODYNAMICS - II

CHEMICAL ENGG. THERMODYNAMICS-II [ICHM 232 - S2]

Marks: 100 Duration: 180 mins.

Answer 5 out of 8 questions.

10 bar?

- Mercury has a density of $13.69 \times 103 \text{ kg/m}^3$ in the liquid state and $14.193 \times 10^3 \text{ kg/m}^3$ in the solid state, both measured at the melting point of 234.33 K at 1 bar. If the heat of fusion of mercury is 9.7876 kJ/kg, what is the melting point of mercury at
 - For the vaporization of water, derive the Clausius Clapeyron (10) equation
- The standard heat of formation and standard free energy of formation of ammonia at 298 K are 46,100 J/mol and 16,500 J/mol respectively. Calculate the equilibrium constant for the reaction

$$N_2 + 3 H_2 --> 2 NH_3$$

At 500 K assuming that the standard heat of reaction is constant in the temperature range 298 K to 500 K.

Consider a system in which the following reactions occur $CH_4 + H_2O --> CO + 3 H_2$ (1) $CH_4 + 2 H_2O --> CO_2 + 4 H_2$ (2)

where the numbers (1) and (2) indicate the value of j, the reaction index. If 2 mol CH₄ and 3 mol H₂O are present initially, determine expressions for the y_i as functions of ϵ_1 and ϵ_2 .

- Calculate standard heat of reaction and free energy change at $^{(10)}$ 37ŰC for the following reaction, if the equilibrium constant is 5.3 fold higher than standard state equilibrium constant ATP + H2O \Leftrightarrow ADP + P_i + H⁺ ($\triangle G^{\circ} = -30.5 \text{ kJ/mol}$)
 - In a laboratory investigation, acetylene is catalytically hydrogenated to ethylene at 1120°C and 1 bar. If the feed is an equilmolar mixture of acetylene and hydrogen, what is the

composition of the product stream at equilibrium?

$$C_2H_2 \to 2C + H_2$$
 $K_1 = (4 \times 10^5)$

$$2C + 2H_2 \rightarrow C_2H_4$$
 $K_2 = (2.5 \times 10^{-6})$

- For a closed system involving phase transition of a pure substance, prove that chemical potential of the substance in each phase is equal.
 - Derive an expression for the fugacity coefficient of a gas obeying the equation of state P(V-b)=RT and estimate the fugacity of ammonia at 10 bar and 298 K, given that $b=3.707 \times 10^{-5} \, \text{m}^3/\text{mol}$.
- The enthalpy of a binary liquid system of species 1 and 2 at fixed T and P is:

$$H = 400x_1 + 600x_2 + x_1x_2(40x_1 + 20x_2)$$

Determine expressions for $\overline{H_1}$ and $\overline{H_2}$ as functions of x_1 ,

numerical values for the pure-species enthalpies H_1 and H_2 , and numerical values for the partial enthalpies at infinite dilution $\overline{H_1^\infty}$ and $\overline{H_2^\infty}$

- Prove that if Henry's law is obeyed by component 1 in binary solution over certain concentration range, Lewis-Randall rule will be obeyed by component 2 over same concentration range.
 - The partial pressures of acetone (A) and chloroform (B) were measured at 298 K and are reported below:

x_A	0	0.2	0.4	0.6	0.8	1.0
$\overline{p_A}$, bar	0	0.049	0.134	0.243	0.355	0.457
$\overline{p_R}$, bar	0.386	0.288	0.187	0.108	0.046	0

Calculate the activity and activity coefficient of chloroform in acetone at 298 K

- (i) Based on the standard state as per Lewis-Randall rule.
- (ii) Based on Henry's law
- Derive an expression for the fugacity coefficient of a gas obeying the following equation of state. $Z = a + bP + cP^2$

Where
$$a$$
, b and c are empirical constants and P is in bar Determine the fugacity of oxygen at 293 K and 100 bar. Data: $a = 1.0$; $b = -0.753 \times 10^{-3}$; $c = 0.15 \times 10^{-5}$.

B) Benzene & Toluene form an ideal solution. The vapour pressure of both (10) components are given by

$$logP^s = A - \frac{B}{T+C}$$

A B C

Benzene (1) 6.87987 1196.760 219.161

Toluene (2) 6.95087 1342.310 219.187

1342.310

219.187

Draw T-x-y (Boiling point) and x-y (Equilibrium) diagram at 760 Torr.

6.95087

8) (20)Water (1)-hydrazine (2) system forms an azeotrope containing 58.5% (mol) hydrazine at 393 K and 101.3 kPa. Calculate the equilibrium vapour composition for a solution containing 20% (mol) hydrazine. The relative volatility of water with reference to hydrazine is 1.6 and may be assumed to remain constant in the temperature range involved. The vapour pressure of hydrazine at 393 K is 124.76 kPa.

----End-----