Question Paper

Exam Date & Time: 20-Nov-2018 (02:00 PM - 05:00 PM)

MANIPAL ACADEMY OF HIGHER EDUCATION

INTERNATIONAL CENTRE FOR APPLIED SCIENCES THIRD SEMESTER B.SC. Applied Sciences in Engg. END - SEMESTER THEORY EXAMINATIONS NOVEMBER - 2018 COMBINATIONAL AND SEQUENTIAL LOGIC [EC 231]

Marks: 100

Duration: 180 mins.

Answer 5 out of 8 questions.

Missing data, if any, may be suitably assumed

1)	A)	(i) Add 548.6 + 280.37 in BCD number system (ii) Convert the following to the indicated bases $(34F.B)_{16}$ = (?) ₈ $(84.3)_{10} = (?)_2$ (iii) In an odd parity scheme which of the following contains an error (a) $(10110111)_2$ (b) $(11101010)_2$	(6)
	B)	Design a combinational circuit to detect the decimal numbers 0,1,3,5 and 7 in a BCD input.	(4)
	C)	Simplify the following function using karnaugh map and draw the circuit for the simplified expression using NAND gates. Also determine the essential prime implicant $F(A,B,C,D) = \sum m(0,4,5,10,11,13,15)$	(5)
	D)	Write a dataflow VHDL code for 8 to 3 encoder	(5)
2)	A)	Simplify the following Boolean expression (a) AB+(AC)'+AB'C(AB+C) (b)[A+ (BC)']'(AB'+ABC)	(5)
	B)	Design a combinational circuit to convert BCD to gray code using basic gates.	(5)
	C)	Using Quine Mccluskey method, Obtain the minimal sum for	(10)

 $F(A,B,C,D) = \sum m(0,1,6,7,8,9,13,14,15)$ (5) 3) With a neat circuit diagram, explain the working of 4 bit binary adder/subtractor A) Implement the following function $F(A,B,C,D) = \sum$ (5) B) m(0,1,3,4,8.9,15) using (i) 8:1 multiplexer and basic gates (ii) 4:1 multiplexer and basic gates C) (5) Implement the following multiple output combinational circuit using 4 to 16 decoder with active low outputs. $F1 = \sum m(0,1,2,6) F2 = \sum m(2,4,6) F3 = \sum m(0,1,5,6) F4 = \sum m(0,1$ m(0,1,4,7,12,14,15) D) Write a behavioral VHDL code for 8:1 multiplexer using (5) case statement 4) Implement the function $F = \sum m(0, 2, 4, 6, 7, 8, 10, 12, 13, 15)$ (5) using PLA. A) B) Design a circuit for 4 to 2 priority encoder using basic (5) gates C) Convert (i) JK flipflop to SR flipflop, (ii) SR flipflop to T (5) flipflop D) Design a Mod 6 ripple up counter using T flipflop (5) 5) (10)Design a synchronous counter that goes through states 0,1,2,4,0,....The unused states must always go to zero A) (000) on the next clock pulse B) Explain the operation of a master slave JK flipflop with a (5) neat circuit diagram C) Draw the logic diagram of gated SR latch using NAND (5) gates. Derive the truth table for the same and explain its operation With a neat circuit diagram, explain the operation of 4 bit 6) (10)Universal Shift register for the following table A)

S ₁	S_0	Operation
0	0	No change
0	1	Shift right
1	0	Shift left
1	1	Parallel load

B) Reduce the following state table and draw reduced state (5) diagram

Present State	Next X=0	State X=1	Ou X=0	tput X=1
А	В	С	1	0
В	F	D	0	0
С	D	Е	1	1
D	F	Е	0	1
Е	А	D	0	0
F	В	С	1	0

- ^{C)} Write the behavioral VHDL code for 4 bit parallel in serial ⁽⁵⁾ out shift register
- Analyze the following synchronous sequential circuit. Draw ⁽¹⁰⁾
 the logic circuit, excitation table / state table and state
 - diagram, X is the input, A&B are the outputs.

 $J_A{=}B$, $~J_B{=}X^\prime$, $K_A{=}X^\prime B$, $K_B{=}A$ xor X

- ^{B)} Design a Mealy type Sequence detector to detect an ⁽¹⁰⁾ overlapping sequence "1010"
- ⁸⁾ Write the structural VHDL code for 8:1 multiplexer using ⁽¹⁰⁾
 A) 2:1 multiplexer (Code needs to be written for entire hierarchy).
 - ^{B)} Explain the operation of 4 bit Ring counter with a neat ⁽⁵⁾ circuit diagram and suitable timing waveforms.
 - C) Define the following terms with an example (5)
 - (i) Self complementing code.
 - (ii) Unit distance code.

-----End-----