

MANIPAL ACADEMY OF HIGHER EDUCATION

INTERNATIONAL CENTRE FOR APPLIED SCIENCES THIRD SEMISTER B Sc.EXAMINATION NOV 2018 ELECTROMAGNETIC THEORY [IEC 233 - S2]

Marks: 100 Duration: 180 mins.

Answer 5 out of 8 questions.

- Find whether the following potentials satisfying Laplace's equation or not

 (i) $V = \frac{z \cos \phi}{\rho}$ (ii) $V = \frac{30 \cos \theta}{r^2}$
 - if $\chi_m = 3.1$ for a material within which $\overline{B} = 0.4 y \overline{a_y}$ T find (i) \overline{H} (ii) μ (iii) μ_r (iv) \overline{M} (v) \overline{J} (vi) \overline{J}_b
 - Consider two points A (-3, 2, 1) and B (5,200,-700) find (i) the spherical coordinates of A (ii) the rectangular coordinates of B(iii) the distance between A and B
- Derive an expression for inductance of a Solenoid. (7)
 - A)
 B)
 An **H** field in free space is given as $\overline{H}(x,t) = 10\cos(10^8 t \beta x)\overline{a_y}$ V/m. Find (a) β (b) λ (c) $\overline{E}(x,t)$ at P (0.1,0.2,0.3) at t=1ns.
 - C) Write short notes on (i) VSWR (ii) Critical angle (iii) Displacement Current (6)
- A charge Q_A =-10 μ C is located at A (-9,6,7) and a charge Q_B =50 μ C is at B(2,2,-2) in free space .If distance are given meters , Find;
 - $(i)^{\overline{R}}_{AB}$
 - (ii) $|R_{AB}|$

Determine the vector exerted on Q_A by Q_B if $\varepsilon_0 = 8.854 X 10^{-12} F/m$

- Write notes on (i) Phase Velocity (ii) Characteristic Impedance (iii)
 Reflection coefficient
- Derive an expression for Electric Field for an infinite sheet charge Placed in (6 xy Plane by using Gauss Law.
- 4) (7)

A)

Given the following values for P_1 , P_2 and $I_1\Delta_1$ respectively, calculate ΔH_2

- (i) $P_1(0,0,2)$, $P_2(4,2,0)$, $2\pi \overline{a_z} \mu Am$
- (ii) $P_1(0,2,0)$, $P_2(4,2,0)$, $2\pi \overline{a_z} \mu Am$
- A steel pipe is constructed of a material for which $\mu_r = 180$ and $\sigma = 4X10^6 S/m$. The two radius are 6 & 8 m and the length is 80 m. if total current carried by the pipe is $2\cos 10^4 \pi t$ A. Find (i) skin depth (ii) the effective resistance (iii) the dc resistance
- Find the capacitance of two parallel plate capacitor using Laplace's Equation if both the plates are separated at a distance of 'd' in $\overline{a_x}$ direction.
- Derive the boundary relations for Dielectric-Dielectric & Dielectric conductor interfaces for static electric field.
 - What is Polarization? Explain all types of Polarization. (7)
 - If $\mu_r = 24$, $\varepsilon_r = 13.55$ and $\overline{H} = 2\cos(10^{10}t \beta x)\overline{a_z}$ A/m, using Maxwell's equation, find \overline{B} , \overline{D} , \overline{E} and β .
- Find the equation of streamline that passes through the point P(-2,7,10) in the field $\overline{E} = 2(y-1)\overline{a_x} + 2x\overline{a_y}$ (7)
 - A 150 MHz uniform plane wave in free space is described by $\overline{H_s} = (4+j10)(2\overline{a}_x + j\overline{a}_y)e^{-j\beta} \text{ A/m. (a) Find Numerical values for } \omega, \lambda \& \beta \text{ (b) Find}$ $\overline{H}(z,t) \text{ at } t = 1.5 \text{ ns, } z = 20 \text{cm} \text{ (c) What is } |E|_{\text{max}}?$
 - Derive an expression foe magnetic field intensity at any point in an solenoid (6) having N number of turns carrying current 'I' A. Hence obtain the same at the center and sides.
- Derive an expression for the inductance per unit length of a coaxial cable. If (7) a coaxial cable has inner conductor of radius 2 mm and outer conductor of radius 9 mm, determine the inductance per unit length(let relative permeability=1).
 - Derive the Poission's and Laplace's equations for the electric potential.

 Discuss the solution of Laplace's equation in spherical coordinates for a case where the potential varies only with respect to θ .
 - What is Brewster angle? Starting with plane wave incidence at dielectric interfaces .Derive an expression for the Brewster angle.
- A uniform plane wave propagating in perfect dielectric medium has $\overline{E} = 500 \cos(10^t \beta z) a_x \text{ v/m and } \overline{H} = 1.1 \cos(10^7 t \beta z) a_y \text{ A/m if the wave is travelling with a}$ velocity $u = 1.5x10^8 m/s$, Find ε_r , μ_r , β , λ and η

- Derive an expression for energy stored in an electrostatic. Write an expression for stored energy due to a uniform line charge distribution.
 - these, (6)

Explain the Biot-Savart law and the Ampere's law. With the help of these, derive an expression for the magnetic field due to an infinite sheet of uniform current density.

----End-----