Question Paper

Exam Date & Time: 16-Nov-2018 (02:00 PM - 05:00 PM)

MANIPAL ACADEMY OF HIGHER EDUCATION

INTERNATIONAL CENTRE FOR APPLIED SCIENCES END - SEMESTER THEORY EXAMINATION- NOVEMBER 2018 III SEMESTER B.Sc.(Applied Sciences) in Engg. FORMAL LANGUAGES AND AUTOMATA THEORY [CS 233]

Marks: 100

Duration: 180 mins.

Answer 5 out of 8 questions.

- ¹⁾ Give the properties of context -free languages by taking L1 $^{(5)}$ _{A)} and L2 as two context free languages.
 - ^{B)} Construct a deterministic finite automaton to accept ⁽⁷⁾ strings of 0's and 1's ending with 00.
 - Find regular grammar for the following languages on {a,b} ⁽⁸⁾ consisting of all strings with no more than three a's. Show the steps to derive a string "babbaab".
- Prove that for any context free language L, there exists (10) non deterministic pushdown automata (PDA) such that L=L (M).
 - ^{B)} Construct a Turing machine with input alphabet {a, b} to (10) accept language $\{a_i \ b_j \mid i \ge 0, j \ge i\}$ by final state.
- ³⁾ Give an algorithm to minimize the number of states in DFA. ⁽⁶⁾
 - A)
 - ^{B)} Minimize the number of states in a below given DFA. (10)

- ^{C)} Obtain a regular expression such that $L(R) = \{w|w \in \{0,1\}^{*}$ (4) } with at least three consecutive 1's.
- ⁴⁾ Write and explain the steps used to convert context free (12) _{A)} grammar(CFG) into Chomsky Normal Form(CNF). Using the same, convert the below given CFG to equivalent CNF $S \rightarrow ASB$, $A \rightarrow aAS|a|\epsilon$, $B \rightarrow SbS|A|bb$

^{B)} When do you say that grammar a context free grammar? ⁽⁸⁾ What are the types of derivation methods are used to derive some sentences from such a grammar? Explain each type of derivation with a suitable example.

⁵⁾ When do you say that two grammars are equivalent? Give ⁽¹⁰⁾ two different the grammar to generate the same language $L=\{a^nb^n: n>=0\}$ and show by derivation that they are equivalent.

^{B)} Obtain an Non deterministic finite automata (NFA) to ⁽¹⁰⁾ accept strings of a's and b's ending with ab or ba. Give the transition table for the NFA drawn by you and trace the input for **"aaaabbbbbbba"** and **"ababaaa"**.

⁶⁾ What is a simple grammar? Explain with example. ⁽⁵⁾

A)

- ^{B)} Construct a right linear grammar for the language L= { (9) $a^{n}b^{m}$: n>=2,m>=3}. Use the grammar given by to derive the strings L⁵,L⁷ and L⁸.
- C) Draw a finite automata that accepts a language generated ⁽⁶⁾ by the grammar:
 S->aS1, S1->abS/b and generalize the grammar in the form of regular Language.
- When do you say the grammar is unrestricted grammar? ⁽⁴⁾
 Give an example for such a grammar?
 - ^{B)} Draw a DFA to accepted decimal strings divisible by 5. (6)
 - ^{C)} Let X and Y are two positive integer numbers represented ⁽¹⁰⁾ in unary. Obtain a Turing Machine to perform X+Y.
- ⁸⁾ Obtain the PDA to accept the language $L(M) = \{wCw^{R} | w \in (12)\}$
 - ^{A)} $(g+a+d+g)^*$ where w^R is the reverse of w. Show the steps

to trace the string "gadagCgadag".

^{B)} Construct an NFA for a regular expression $ab((a^*+b^*+c^*))^*c$.

-----End-----

(8)