# **Question Paper**

Exam Date & Time: 16-Nov-2018 (02:00 PM - 05:00 PM)



### MANIPAL ACADEMY OF HIGHER EDUCATION

#### INTERNATIONAL CENTRE FOR APPLIED SCIENCES THIRD SEMESTER B.Sc. Applied Sciences in Engg. END-SEMESTER THEORY EXAMINATIONS NOVEMBER - 2018 NETWORK ANALYSIS [IEE 231]

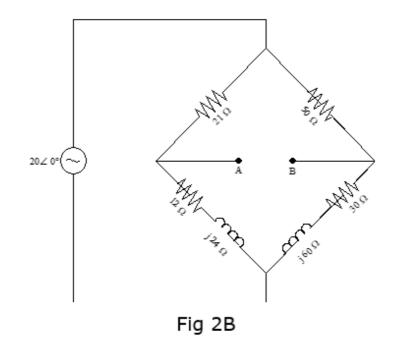
Marks: 100

Duration: 180 mins.

# Answer 5 out of 8 questions.

## Missing data, if any, may be suitably assumed

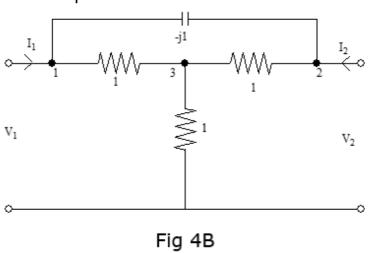
- <sup>1)</sup> Find the laplace transformation of the periodic rectified sine <sup>(5)</sup> <sub>A)</sub> wave with period T and peak value of A
  - <sup>B)</sup> Find the initial and final values of the function whose laplace <sup>(6)</sup> transform is


 $F(s) = \frac{(2S+1)}{(6S^2+11S+6)}$  and  $F(s) = \frac{10}{S(S^2+2S+4)}$ 

<sup>C)</sup> Currents  $I_1 \& I_2$  entering port1 & port 2 respectively are given <sup>(9)</sup> by  $I_1=0.5 V_1 - 0.2 V_2$  $I_2= -0.2 V_1 + V_2$ Find Y, Z and ABCD parameters.

<sup>2)</sup> A step voltage of E volts is applied to a series RLC circuit with <sup>(12)</sup> <sub>A)</sub> L=1H, C= $\frac{1}{4}F$ . Find the voltage across the capacitor for the

> following values of resistance. R=2  $\Omega$ , R=4  $\Omega$  and R=5  $\Omega$ . Comment on the results.


<sup>B)</sup> Find the Thevenin equivalent for the network shown in Fig 2B <sup>(8)</sup>

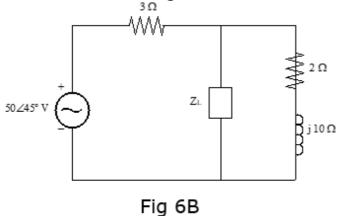


- <sup>3)</sup> Two coils with  $L_1=6.8$  mH and  $L_2=4.5$  mH are connected in <sup>(8)</sup> series cumulative mode and differential mode. The equivalent inductance in cumulative mode is 19.6 mH and in differential mode is 3 mH. Find the value of mutual inductance and coefficient of coupling.
  - <sup>B)</sup> Using convolution theorem evaluate the inverse laplace <sup>(12)</sup> transform of the following.

i) 
$$\frac{1}{(s+a)^2}$$
 ii)  $\frac{1}{s(s+a)}$  iii)  $\frac{1}{(s^2+1)^2}$ 

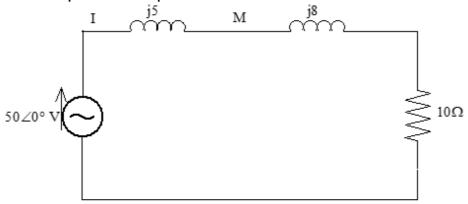
- <sup>4)</sup> Find the laplace transform of the following functions. (12) <sup>A)</sup> i)  $f(t) = \cos^2 t$  ii)  $f(t) = t \sin \omega t$  iii)  $f(t) = \frac{(1 - e^{-t})}{t}$  iv)  $(t + 1)^2 e^t$ 
  - <sup>B)</sup> Find the Y parameters of the network shown in Fig 4B.




(8)

Find the network functions  $\frac{V_1}{I_1}$ ,  $\frac{V_2}{V_1}$  for the network in Fig 5A. A) ¼ F 3 H  $I_1$ I<sub>2</sub>=0 V<sub>1</sub> ½ H V2 2 F Fig 5A B) (10)For the given electrical circuit shown in Fig 5B find  $\frac{V_0(s)}{V_i(s)}$ . R1 R2 V<sub>i</sub>(t)  $V_{o}(t)$ C2C1

5)


| Fia | 5B |
|-----|----|
|     |    |

- 6) A rectangular pulse of height 1 and width T is applied to a (10)series RC circuit. Find the expression for voltage across the A) capacitor and plot the waveform.
  - B) Find the value of  $Z_1$  so that maximum power can be (10) transferred to it (Fig 6B). Find the maximum power.



(10)

For the network shown in Fig.7A find K and place the dots so (10) that the power output of source is 168 W.



7)

A)



<sup>B)</sup> In the network shown in Fig 7B, the switch is moved from a to b,  $^{(10)}$  at t=0, find V(t)

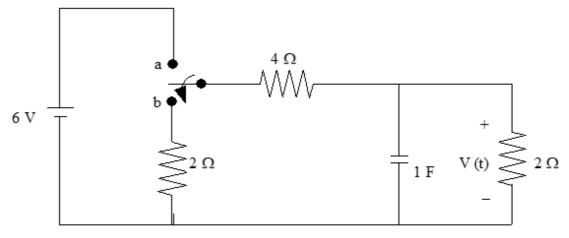
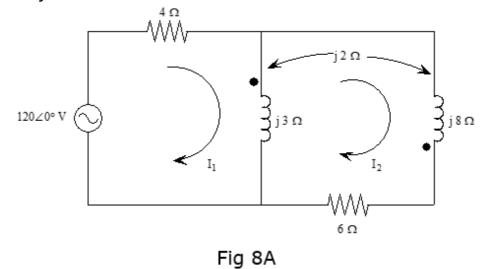
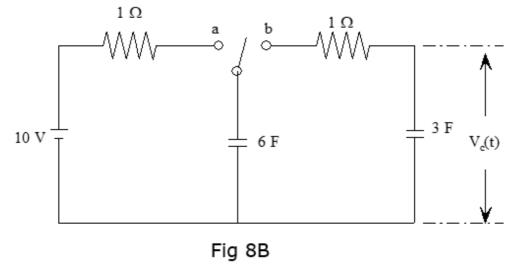





Fig 7B

<sup>8)</sup> Find the current through the 6  $\Omega$  resistor on Fig 8A using mesh <sup>(10)</sup> <sub>A)</sub> analysis.



<sup>B)</sup> In the network shown in Fig 8B, the switch is moved from a to  $^{(10)}$  b at t=0, determine V<sub>c</sub>(t).



-----End-----