Question Paper

Exam Date & Time: 30-Nov-2018 (09:30 AM - 12:30 PM)

MANIPAL ACADEMY OF HIGHER EDUCATION

INTERNATIONAL CENTRE FOR APPLIED SCIENCES IV SEMESTER B.S. ENGG. END SEMESTER EXAMINATION - NOV./ DEC. 2018 VLSI Design [EC 245A]

Marks: 100

Duration: 180 mins.

Answer 5 out of 8 questions.

- ¹⁾ Explain the working of enhancement N-MOS transistor in ⁽¹⁰⁾ cut-off, linear and saturation regions. Draw voltage current characteristics and explain
 - ^{B)} Derive the required ratio between $Z_{p.u.}$ and $Z_{p.d.}$ if an ⁽¹⁰⁾ nMOS inverter with depletion mode pull up is to be driven from another nMOS inverter with depletion mode pull up .
- ²⁾ With the help of neat circuit diagram and curve, explain (10) (10) the working of CMOS inverter. Derive the expression for V_{inv} . Discuss the merits of CMOS inverter over NMOS inverter with depletion load.
 - ^{B)} Calculate the effective capacitance for the given multilayer structure in Figure 2B for 5μ m process. Relative Capacitance value for metal1= 0.075, polysilicon=0.1 and Gate to channel = 1.0.

Figure 2B

Show that the inverter pair delay using two identical ⁽¹⁰⁾

Page #1

- A) pseudo-NMOS inverters is larger by a factor 1.7 than that using minimum size NMOS inverters with depletion-mode pull-up.
- ^{B)} Discuss about formal estimation of CMOS Inverter delays ⁽¹⁰⁾ and derive the necessary expressions for rise time and fall time.
- ⁴⁾ Define latch-up in CMOS. Why does it occur? What are the ⁽¹⁰⁾ remedies for latch-up? Explain in detail with necessary circuit diagrams and curve.
 - ^{B)} With neat figures explain the different steps involved in the ⁽¹⁰⁾ fabrication of CMOS inverter using SOI technique. Write the merits and demerits of SOI technique.
- ⁵⁾ Discuss the structured design implementation of (n+1)-bit ⁽¹⁰⁾ _{A)} parity indicator block that is provided with bit input word An A_{n-1} A_{n-2}.....A₁A₀.The circuit has one bit parity output P. P will be HIGH (LOW) for even (odd) number of 1s at input. Give the stick notation for CMOS implementation of standard cell.
 - ^{B)} Compare and contrast CMOS and Bipolar technologies. ⁽¹⁰⁾
- Give hardware implementation for storing following 4-bit (10) words using NMOS ROM structure. word1: 0101; word2: 0010; word3: 1001; word4: 0110
 - ^{B)} Give the circuit implementation of following multiple output ⁽¹⁰⁾ function using NMOS based PLA. Give the stick notation.

 $Z_1 = AB + \overline{ABC} ; Z_2 = AB ; Z_3 = A + \overline{BC}$

- ⁷⁾ Design the circuit of **Figure 7A** so that transistor operates ⁽¹⁰⁾ at $I_D = 0.4$ A and $V_D = 0.5$ V. The NMOS transistor has $V_t = 0.7$ V cm Correction 100 mM/² less than and M = 22 mm Naglest
 - 0.7V, $\mu_n \text{Cox} = 100 \ \mu \text{A/V}^2$, L= 1 μ m and W= 32 μ m.Neglect the channel length modulation effect.

Figure 7A

- ^{B)} Explain different scaling models. Discuss the effect of all ⁽¹⁰⁾ scaling on following parameters:
 - [i] Gate area A_g
 - [ii] Gate capacitance per unit area Co
 - [iii] Carrier density in channel Qon
 - [iv] Maximum operating frequency f_o.
- ⁸⁾ Explain the operation of inverting and non- inverting super ⁽¹⁰⁾
 ^{A)} buffer. How does super buffer avoid unequal rise and fall delay in NMOS inverters? Give proper justification.
 - ^{B)} Discuss cascaded inverters as drivers for driving large ⁽¹⁰⁾ capacitive loads and derive the necessary expressions.

-----End-----